Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.2.84

Study on the preparation of electrochemical exfoliated graphene/Fe oxide compound according to synthetic conditions  

Park, Eunjin (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.2, 2022 , pp. 84-90 More about this Journal
Abstract
With the growing interest in energy storage and conversion systems including secondary batteries, capacitors, and water electrolysis, various electrode materials are being developed to improve the energy efficiency. Among them, graphene is regarded as one of the promising candidates owing to its exceptional properties - large surface area, and excellent electrical conductivity. Herein, we report a facile one-step electrochemical approach to synthesize exfoliated graphene/Fe oxide compound. The effect of experimental conditions - the types of applied voltage, kinds of counter electrodes, acidity of electrolyte on the synthesis of graphene/Fe oxide compound is investigated.
Keywords
Graphene; Transition metal; Electrochemical exfoliation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. J. Jeong, Y. C. Oh, S. H. Kim, Electrochemical property of the composite eectrode with graphene balls and gaphene oxide for supercapacitor, J. Kor. Inst. Surf. Eng., 53 (2020) 213-218.   DOI
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.   DOI
3 B. J. Lee, G. H. Jeong, Graphene doping by ammonia plasma surface treatment, J. Kor. Inst. Surf. Eng., 48 (2015) 163-168.   DOI
4 K. Parvez, Z. S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Muullen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Am. Chem. Soc., 136 (2014) 6083-6091.   DOI
5 Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance, ACS Nano, 4 (2010) 3187-3194.   DOI
6 K. Chen, D. Xue, Preparation of colloidal graphene in quantity by electrochemical exfoliation, J. Colloid Interface Sci., 436 (2014) 41-46.   DOI
7 J. Azadmanjiri, V. K. Srivastava, P. Kumar, J. Wang, A. Yu, Graphene-supported 2D transition metal oxide heterostructures, J. Mater. Chem. A, 6 (2018) 13509-13537.   DOI
8 A. M. Khattak, H. Yin, Z. A. Ghazi, B. Liang, A. Iqbal, N. A. Khan, Y. Gao, L. Li, Z. Tang, Three dimensional iron oxide/ graphene aerogel hybrids as all-solidstate flexible supercapacitor electrodes, RSC Adv., 6 (2016) 58994-59000.   DOI
9 H. Fei, Z. Peng, L. Li, Y. Yang, W. Lu, E. L. Samuel, X. Fan, J. M. Tour, Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries, Nano Res., 7 (2014) 502-510.   DOI
10 K. Chen, D. Xue, S. Komarneni, Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode, J. Colloid Interface Sci., 487 (2017) 156-161.   DOI
11 M. Hofmann, W. Y. Chiang, T. D. Nguyen, Y. P. Hsieh, Controlling the properties of graphene produced by electrochemical exfoliation, Nanotechnology, 26 (2015) 335607.   DOI
12 H. Wang, J. T. Robinson, G. Diankov, H. Dai, Nanocrystal growth on graphene with various degrees of oxidation, J. Am. Chem. Soc., 132 (2010) 3270-3271.   DOI
13 A. Muzaffar, M. B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sust. Energ. Rev., 101 (2019) 123-145.   DOI
14 X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44 (2015) 5148-5180.   DOI
15 Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials, Energy Environ. Sci., 4 (2011) 1113-1132.   DOI
16 V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev., 116 (2016) 5464-5519.   DOI
17 Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, Carbon-based supercapacitors produced by activation of graphene, Science, 332 (2011) 1537-1541.   DOI
18 D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7 (2015) 19-29.   DOI
19 B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Graphenebased composites for electrochemical energy storage, Energy Storage Mater., 24 (2020) 22-51.   DOI