• Title/Summary/Keyword: Excitation System Model

Search Result 454, Processing Time 0.025 seconds

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

An Experimental Study on Sloshing Impact Pressures with Two Identically Shaped Rectangular 2-Dimensional Model Tanks with Different Sizes (동일 형상의 서로 다른 크기를 가지는 2차원 4각 탱크의 슬로싱 충격 압력에 관한 실험적 연구)

  • Hwang, Yoon-Sik;Jung, Jun-Hyung;Kim, Dae-Woong;Ryu, Min-Cheol
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.16-28
    • /
    • 2008
  • Recent growth in LNG market has led dramatic increase in new buildings of LNG carriers and several large LNG carriers are now being constructed by shipbuilders in Korea. Large size LNG carriers has brought keen concerns on the issue regarding safety of cargo containment systems and sloshing impact load which is the critical source of loads on the membrane type containment systems. Up to the present, the best way to properly assess sloshing impact pressures on surrounding walls is a model testing for wide-ranged excitation conditions. These impact pressures obtained from model tests sometimes need to be interpreted to full-scale values and in the near future this necessity will be strengthened for more rigorous and direct safety assessment of LNG cargo containment system. In this paper, a basic experimental study is carried out with two different sized, 2D identically shaped model tanks excited in simple translational motions. Relationships between pressures of different sized model tanks are investigated Model tanks are filled with fresh water and equipped with same sized pressure sensors.

  • PDF

Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China

  • Lu, Xilin;Ding, Kun;Shi, Weixing;Weng, Dagen
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.607-621
    • /
    • 2012
  • The Expo Culture Centre is one of the permanent buildings at the World Expo 2010 in Shanghai, China. The main structure has an oval shape and consists of 36 radial cantilever steel trusses with different lengths and inner frames made of concrete-filled rectangular steel tube members. Tuned mass dampers are used to reduce the excessive vibrations of the sixth floor that are caused by human-induced resonance. A three-dimensional analytical model of the system is developed, and its main characteristics are established. A series of field tests are performed on the structure, and the test results show that the vertical vibration frequencies of most structural cantilevers are between 2.5 Hz and 3.5 Hz, which falls in the range of human-induced vibration. Twelve pairs of tuned mass dampers weighing 115 tons total were installed in the structure to suppress the vibration response of the system. These mass dampers were tuned to the vertical vibration frequency of the structure, which had the highest possibility of excitation. Test data obtained after the installation of the tuned mass dampers are used to evaluate their effectiveness for the reduction of the vibration acceleration. An analytical model of the structure is calibrated according to the measured dynamic characteristics. An analysis of the modified model is performed and the results show that when people walk normally, the structural vibration was low and the tuned mass dampers have no effect, but when people run at the structural vibration frequency, the tuned mass dampers can reduce the floor vibration acceleration by approximately 15%.

Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.33-46
    • /
    • 2024
  • The present research delves into the analysis of nonlinear free and forced vibrations of porous functionally graded (FG) shallow shells reinforced with oblique stiffeners, which are embedded in a nonlinear elastic foundation (NEF) subjected to external excitation. Two distinct types of PFG shallow shells, characterized by even and uneven porosity distribution along the thickness direction, are considered in the research. In order to model the stiffeners, Lekhnitskii's smeared stiffeners technique is implemented. With the stress function and first-order shear deformation theory (FSDT), the nonlinear model of the oblique stiffened shallow shells is established. The strain-displacement relationships for the system are derived via the FSDT and utilization of the von-Kármán's geometric assumptions. To discretize the nonlinear governing equations, the Galerkin method is employed. The model such developed allows analysis of the effects of the stiffeners with various angles as desired, in addition to the quantitative investigation on the influence of the surrounding nonlinear elastic foundations. To numerically solve the problem of vibrations, the 4th-order P-T method is used, as this method, known for its enhanced accuracy and reliability, proves to be an effective choice. The validation of the present research findings includes a comprehensive comparison with outcomes documented in existing literature. Additionally, a comparative analysis of the numerical results against those obtained using the 4th Runge-Kutta method is performed. The impact of stiffeners with varying angles and material parameters on the vibration characteristics of the present system is also explored. The researchers and engineers working in this field may use the results of this study as benchmarks in their design and research for the considered shell systems.

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

Realization of the Dynamic Control System for the Neural Network Analysis of the Cerebellum (소뇌의 신경회로망 해석을 위한 운동제어계의 실현)

  • 이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 1981
  • This paper deals with a new approach to the modelling of neural interactions in the cerebellar cortex to construct a general purpose electronic simulation model. Since physiological data show that cerebellar neural activity changes in an approximately pulse manner in response to pulse stimulation, the differences in timing between excitation and inhibition of cerebellar cells will be treated as pure time delays and the transfer functions of the cells will be presented by pure gains. The parameters to be discussed in this paper are the coupling coefficients between a cell and its several inputs, the magnitude of a coupling coefficient which is presented as a measure of how much influnce a particular has on its target cell. And also this paper has been proposed that the cerrbellum engaged in improving the overall performance of the motor control system, i.e., the cerebellum is a compensator.

  • PDF

Random response analysis of Missile Guidance Structure by using Finite Element Method (유한요소 해석을 이용한 Missile Guidance Structure의 Random response analysis)

  • Kim, Jaeki;Nam, Kwangsik;choi, Jinkyu;Choi, Homin;Zhao, Shang;Yeom, Sang Hun;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • In the vibration test, Most of the test specifications is standardized methods of sinusoidal excitation. However, in accordance with the ability of the test equipment progress and developments of electronic technology, methods of random vibration test is standardized in the MIL standard. Therefore, in this study, we tried to analyze Missile Guidance Structure using a finite element analysis with ABAQUS 6.13 that is commercial program. First, Random response analysis is analyzed. Following analyzing the results, we wanted to find the model that is lightweight and resonance does not occur.

Modeling of Transmission Error of A Gear Pair with Modified Teeth (치형수정된 기어쌍의 치합전달오차 모델링)

  • 주상훈;노오현;정동현;배명호;박노길
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.841-848
    • /
    • 1998
  • In the gear manufacturing, tooth modification is usually applied for the prevention of tooth impact during the loading. In contrary, tooth profile error causes amplifying the whine noise which is cumbersome to reduce in the automobile gear box. So optimum quantity of the modifications must be obtained for the good performance in the vibrational sense. In this paper, a formulation to define the tooth curve by considering the profile manufacturing error and loading deformation of the gear tooth is suggested and the transmission error and loading deformation of the gear tooth is suggested and the transmission error with modified tooth in the gear system is evaluated. A pair of gear set is mathematically modelled. The equivalent excitation in the gear vibratonal model is formulated. For the experimental evaluaton on the derived transmission error function, a simple geared system is set up in which the gears are designed to give pre-designed tooth profile modification and manufactured by CNC Wire Cutting Machine. Under slow speed operaton, the transmission error of the gear pair is measured by using two rotational laser vibrometers, compared with the calculated one of which the result shows good agreement.

  • PDF