• Title/Summary/Keyword: Excimer

Search Result 426, Processing Time 0.028 seconds

Polycrystalline silicon thin film fabricated on plastic substrates by excimer laser annealing (엑시머 레이저 어닐링을 이용하여 플라스틱 기판에 형성한 다결정 실리콘 박막의 특성)

  • 조세현;이인규;김영훈;문대규;한정인
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • In this paper, we investigated the ultra-low temperature(<$150^{\circ}C$) polycrystalline silicon film on plastic substrate application using RF-magnetron sputtering and excimer laser annealing. Amorphous silicon films were deposited using Ar/He mixture gas at $120^{\circ}C$ and in-film argon concentration was less than 2%, which was measured to Rutherford Backscattering Spectrometry. At energy density 320mJ/$\textrm{cm}^2$, RMS roughness was 267$\AA$ and UV crystallinity was 62%. The grain size varies from 50nm to 100nm after excimer laser irradiation.

Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics (Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성)

  • Lee, Woo-Hyun;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

Low Temperature Poly-Si TFTs with Excimer Laser Annealing on Plastic Substrates (플라스틱 기판위에 엑시머 레이저 열처리된 저온 다결정 실리콘 박막 트랜지스터)

  • Choi, Kwang-Nam;Kwak, Sung-Kwan;Kim, Dong-Sik;Chung, Kwan-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.11-15
    • /
    • 2006
  • In this paper characteristics of polycrystalline silicon crystallized by excimer laser on plastic substrate under 150$^{\circ}C$ is investigated. Amorphous silicon is deposited by rf-magnetron sputter in atmosphere of Ar and He for preventing depletion effect by dehydrogenation as deposition by PECVD. After annealing by 308 nm, 30 Hz, double pulse type XeCl excimer laser, p-chnnel low temperature polycrystalline silicon TFT which maximum mobility is $64cm^2/V{\cdot}s$ at $344mJ/cm^2$ is fabricate.

Excimer Studies on Copolymer of Styrene-Acrylic Acid (스티렌-아크릴산 공중합체의 들뜬이합체 연구)

  • Lee, Yeon Hui;Gang, Seong Cheol;Kim, Gang Jin
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.91-97
    • /
    • 1990
  • Copolymers (PSAA) of styrene-acrylic acid were prepared through a free radical mechanism using azobisisobutyronitrile as an initiator. The fluorescence emission spectra of PSAA and the styrene-acrylic acid copolymers complexed with $Eu^{3+}$ (PSAA-Eu) were studied. The excimer fluorescence, centered at 330 nm, increases when the styrene mole fraction increases. Since the excimer fluorescence intensities of PSAA-EU, PSAA-Tb and PSAA-Eu-Tb were almost same, it appears that the kind of metal ion does not affect the excimer fluorescence. An interpretation of the results which takes into account the statistical composition of the copolymers, indicates that energy migration can occur from isolated to non-isolated styrene units.

  • PDF

ITO Thin Film Ablation Using KrF Excimer Laser and its Characteristics

  • Lee, Kyoung-Chel;Lee, Cheon;Le, Yong-Feng
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.20-24
    • /
    • 2000
  • This study aimed to develop ITO(Indium Tim Oxide) tin films ablation with a pulsed type KrF excimer laser required for the electrode patterning application in flat panel display into small geometry on a large substrate are. The threshold fluence for ablating ITO on glass substrate is about 0.1 J/㎠. And its value is much smaller than that using 3 .sup rd/ harmonic Nd:YAG laser. Through the optical microscope measurement the surface color of the ablated ITO is changed into dark brown due to increase of surface roughness and transformation of chemical composition by the laser light. The laser-irradiated regions were all found to be electrically isolating from the original surroundings. The XPS analysis showed that the relative surface concentration of Sn and In was essentially unchanged (In:Sn=5:1)after irradiating the KrF excimer laser. Using Al foil made by 2$\^$nd/ harmonic Na:YAG laser, the various ITO patterning is carried out.

  • PDF

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Passivation Effects of Excimer-Laser-Induced Fluorine using $SiO_{x}F_{y}$ Pad Layer on Electrical Characteristics and Stability of Poly-Si TFTs ($SiO_{x}F_{y}$/a-Si 구조에 엑시머 레이저 조사에 의해 불소화된 다결정 실리콘 박막 트랜지스터의 전기적 특성과 신뢰도 향상)

  • Kim, Cheon-Hong;Jeon, Jae-Hong;Yu, Jun-Seok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.623-627
    • /
    • 1999
  • We report a new in-situ fluorine passivation method without in implantation by employing excimer laser annealing of $SiO_{x}F_{y}$/a-Si structure and its effects on p-channel poly-Si TFTs. The proposed method doesn't require any additional annealing step and is a low temperature process because fluorine passivation is simultaneous with excimer-laser-induced crystallization. A in-situ fluorine passivation by the proposed method was verified form XPS analysis and conductivity measurement. From experimental results, it has been shown that the proposed method is effective to improve the electrical characteristics, specially field-effect mobility, and the electrical stability of p-channel poly-Si TFTs. The improvement id due to fluorine passivation, which reduces the trap state density and forms the strong Si-F bonds in poly-Si channel and $SiO_2/poly-Si$ interface. From these results, the high performance poly-Si TFTs canbe obtained by employing the excimer-laser-induced fluorine passivation method.

  • PDF

Excimer and Aggregate Formations in Poly(fluorene)s

  • Lee, Jeong-Ik;Lee, Victor Y.;Miller, Robert D.
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.409-414
    • /
    • 2002
  • This paper investigates the absorption and emission changes in poly(di-n-hexylfluorene)s. We prepared the poly(di-n-hexylfluorene)s end capped with 2-bromofluorene, 2-bromo-9,9-di-n-hexylfluorene, and 9-bromoanthracene through Ni (0) mediated polymerization. In addition, we also synthesized a structurally distorted copolymer of 2,7-dibromo- 9,9-di-n-hexylfluorene and 9,9-bis(4-bromophenyl) fluorene end capped with 2-bromofluorene through the same polymerization method. The absorption and emission changes of these polymers between before and after thermal annealing in a nitrogen atmosphere clarify the role of aggregate/excimer formation in poly(fluorene)s. The large absorption changes must be attributed to aggregate formation (ground state interaction), which causes only a slight red shift of the vibronically structured emission bands. We assign the additional long wavelength emission as an excimer band (excited state interaction), which is preferably formed at chain ends.

  • PDF

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

Fabrication of the LDD Structure poly-Si TFT with Excimer Laser Recrystallization Process (Excimer laser로 재결정화한 LDD구조의 poly-Si TFT 제작)

  • 정준호;박용해
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.324-331
    • /
    • 1995
  • The leakage current characteristics of the low temperature processed LDD structure poly-Si TFT is analyzed. The excimer laser technology was applied to the recrystallization process of poly-Si film and the maximum processing temperature was retained under 600.deg.C. From the fabricated LDD space 0.3.mu.m to 3$\mu$m, the best on/off current ration could be obtained with the 1.3$\mu$m LDD space. And the threshold voltage did not increase more than 4V over 0.8$\mu$m LDD space. The characteristics of leakage current was compared to non-LDD structure TFT to analyze the mechanism of leakage current. Consequently, it could be concluded that the leakage current is strongly affected by the trap states as well as high electric field between gate and drain.

  • PDF