Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.9.2738

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence  

Kim, Dongwook (Department of Chemistry, Kyonggi University)
Publication Information
Abstract
Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.
Keywords
Benzene excimer; Geometry relaxation effects; Singlet vs triplet; Ab initio calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huenerbein, R.; Grimme, S. Chem. Phys. 2008, 232, 362.
2 Olaso-Gonzalez, G.; Roca-Sanjuan, D.; Serrano-Andres, L.; Merchan, M. J. Chem. Phys. 2006, 125, 231102.   DOI
3 Amicangelo, J. C. J. Phys. Chem. A 2005, 109, 9174.
4 Rocha-Rinza, T.; Christiansen, O. Chem. Phys. Lett. 2009, 482, 44.   DOI
5 Pabst, M.; Lunkenheimer, B.; Kohn, A. J. Phys. Chem. C 2011, 115, 8335.
6 Shirai, S.; Iwata, S.; Tani, T.; Inagaki, S. J. Phys. Chem. A 2011, 115, 7687.   DOI
7 Kolaski, M.; Arunkumar, C. R.; Kim, K. S. J. Chem. Theor. Compt. 2013, 9, 847.   DOI
8 Luo, Y.; Aziz, H. Adv. Funct. Mater. 2010, 20, 1285.   DOI   ScienceOn
9 Zhang, Y.; Forrest, S. R. Phys. Rev. Lett. 2012, 108, 267404.   DOI
10 Grimme, S. J. Chem. Phys. 2003, 118, 9095.   DOI
11 Casanova, D.; Rhee, Y. M.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 164106.   DOI
12 Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821.   DOI
13 Somerharju, P. Chem. Phys. Lipid 2002, 116, 57.   DOI
14 Conlon, P.; Yang, C. J.; Wu, Y.; Chen, Y.; Martinez, K.; Kim, Y.; Stevens, N.; Marti, A. A.; Jockusch, S.; Turro, N. J.; Tan, W. J. Am. Chem. Soc. 2007, 130, 336.
15 Wu, C.; Wang, C.; Yan, L.; Yang, C. J. J. Biomed. Nanotech. 2009, 5, 495.   DOI
16 Rioux, F. J. Chem. Educ. 2007, 84, 358.   DOI
17 Kim, H. G.; Lee, C.-W.; Yun, S.; Hong, B. H.; Kim, Y.-O.; Kim, D.; Ihm, H.; Lee, J. W.; Lee, E. C.; Tarakeshwar, P.; Park, S.-M.; Kim, K. S. Org. Lett. 2003, 5, 3971.   DOI
18 Lee, E. C.; Kim, D.; Jurecka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K. S. J. Phys. Chem. A 2007, 111, 3446.   DOI
19 Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107.
20 Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.   DOI   ScienceOn
21 D'Andrade, B.; Forrest, S. R. Chem. Phys. 2003, 286.
22 Kim, D.; Bredas, J.-L. J. Am. Chem. Soc. 2009, 131, 11371.   DOI
23 Williams, E. L.; Haavisto, K.; Li, J.; Jabbour, G. E. Advanced Materials 2007, 19.
24 Jankus, V.; Monkman, A. P. Adv. Funct. Mater. 2011, 21, 3350.   DOI
25 Bredas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.   DOI   ScienceOn
26 Clarke, T. M.; Durrant, J. R. Chem. Rev. 2010, 110, 6736.   DOI
27 Lee, E. C.; Hong, B. H.; Lee, J. Y.; Kim, J. C.; Kim, D.; Kim, Y.; Tarakeshwar, P.; Kim, K. S. J. Am. Chem. Soc. 2005, 127, 4530.   DOI   ScienceOn
28 Azumi, T.; McGlynn, S. P. J. Chem. Phys. 1964, 41, 3131.   DOI
29 Hirayama, F.; Lipsky, S. J. Chem. Phys. 1969, 51, 1939.   DOI
30 Forster, T. Angew. Chem. Int. Ed. 1969, 8, 333.   DOI
31 Ratner, M. A.; Schatz, G. C. Introduction to Quantum Mechanics in Chemistry; Pearson Education, Inc. (Prentice Hall): Upper Saddle River, NJ., 2001.
32 Doering, J. P. J. Chem. Phys. 1977, 67, 4065.
33 Hiraya, A.; Shobatake, K. J. Chem. Phys. 1991, 94, 7700.   DOI
34 Smith, M. B.; Michl, J. Chem. Rev. 2010, 110, 6891.   DOI
35 Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A., Jr.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Yeh Lin, C.; Van Voorhis, T.; Hung Chien, S.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Min Rhee, Y.; Ritchie, J.; Rosta, E.; David Sherrill, C.; Simmonett, A. C.; Subotnik, J. E.; Lee Woodcock Iii, H.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer Iii, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172.   DOI
36 Velardez, G. F.; Lemke, H. T.; Breiby, D. W.; Nielsen, M. M.; Moller, K. B.; Henriksen, N. E. J. Phys. Chem. A 2008, 112, 8179.   DOI
37 Salman, S.; Kim, D.; Coropceanu, V.; Bredas, J.-L. Chem. Mater. 2011, 23, 5223.   DOI