• Title/Summary/Keyword: Evaluation of image quality

Search Result 955, Processing Time 0.034 seconds

Development of SAR Image Quality Performance Analysis Tool for High Resolution Spaceborne Synthetic Aperture Radar (고해상도 위성 SAR 영상품질 성능 분석 툴 개발)

  • Oh, Tae-Bong;Jung, Chul-Ho;Song, Sun-Ho;Shin, Jae-Min;Kwag, Young-Kil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2010
  • In this paper, the typical Synthetic Aperture Radar (SAR) image quality parameters and analysis method are defined, and the SAR image analysis tool is presented for SAR image evaluation. The structure of the developed SAR image analysis tool consists of four key modules; point target analysis (PTA) module, distributed target analysis (DTA) module, ambiguity analysis (AMA) module, and NESZ analysis (NESZA) module. The developed tool is able to extract the various SAR system parameters from standard SAR product format files. Based on these extracted system parameters, typical SAR image quality parameters are derived from SAR image data.

Image Quality Analysis According to the of a Linear Transducer (선형 탐촉자에서 관심 시각 영역 변화에 따른 화질 분석)

  • Ji-Na, Park;Jae-Bok, Han;Jong-Gil, Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.975-984
    • /
    • 2022
  • Since a linear transducer has an area of interest equal to the length of the transducer, the area of interest can be expanded using the virtual convex function installed in the device.However, it was thought that the change in the direction of the ultrasonic sound velocity according to the change in the visual area of interest would affect the image quality, so this was objectively confirmed. For this study, image evaluation and SNR·CNR of the phantom for ultrasound quality control were measured. As a result, in the phantom image evaluation, both images were able to identify structures in functional resolution, grayscale, and dynamic range. However, it was confirmed that the standard image was excellent in the reproducibility of the size and shape of the structure. As a result of SNR·CNR evaluation, SNR·CNR of most trapezoidal images was low, except for structures at specific locations. In addition, through the statistical analysis graph, it was further confirmed that the SNR and CNR for each depth decreased as the size of the cystic structure decreased. Through this study, it was confirmed that the use of the function has the advantage of providing a wide visual area of interest, but it has an effect on the image quality. Therefore, when using the virtual convex function, it is judged that the examiner should use it in an appropriate situation and conduct various studies to acquire high-quality images and to improve the understanding and proficiency of the equipment.

When Evaluated Using CT Imaging Phantoms AAPM Phantom Studies on the Quantitative Analysis Method (AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구)

  • Kim, Young-Su;Ye, Soo-Young;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.592-600
    • /
    • 2016
  • AAPM CT performance for special medical equipment quality control checks using a standard phantom for evaluation, using the evaluator's subjective assessment as to minimize errors due computerized assessment program to evaluate their usefulness. Phantom for evaluation AAPM CT Performance Phantom: was used, the default shooting conditions are the same as quality control checks. And, we use IMAGE J to evaluate the program. Quantitative evaluation with CT attenuation coefficient and the noise measurement, the uniformity measurement, the slice thickness measurement, contrast resolution of the measurement, a phantom image of the spatial resolution determined by the evaluation program is evaluated as self-extracting the result after processing the image, CT uniformity measurement for the evaluation that was smaller and the standard deviation of a video image processing more uniform slice thickness measurements it is difficult to evaluate due to the difference of the ratio of the measured value of the phantom image. Contrast resolution was measured cylindrical diameter 6th evaluate the shape of a circle obtained a mean value and a standard deviation of diameters, the spatial resolution of the group of source, including acceptance criteria automatically extracted result as a result of both the number of the extracted circularIt appeared. Evaluate the source image and video processing, and video to qualitative evaluation by gross were processed video image is shown excellent results. If the evaluators in order to minimize the errors of subjective judgment based on the results of the above should be done with a quantitative evaluation and qualitative evaluation utilizes a computerized assessment program is considered that further evaluation be made more efficient.

Clinical Evaluation for System Performance of Image Intensifiers (상강화기의 임상평가)

  • Kim, Chang-Seon;Charles R. Wilson
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.143-154
    • /
    • 1998
  • The image intensifier is the key component which determines the imaging characteristics in a fluoroscopic imaging system. A system performance program for clinical evaluation of two image intensifiers, that is simple, non-invasive and time effective, was described. Tests were grouped into three headings: x-ray generator, image quality, and collimation. For the x-ray generator, the kVp accuracy and the automatic exposure control operation were compared. Low- and high-contrast resolution measurements, and mesh pattern study belong to the image quality tests and those tests were performed for the video monitor and photospot images. For the collimation, usable field diameter and image distortion of image intensifiers were measured and quantified. The procedures and the results are hoped to be used for the clinical evaluation of system performance and/or acceptance tests for image intensifiers.

  • PDF

Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1610-1615
    • /
    • 2019
  • Positron emission tomography (PET)/magnetic resonance (MR) scanning has the advantage of less additional exposure to radiation than does PET/computed tomography (CT). In particular, MR based attenuation correction (MR AC) can greatly affect the image quality of PET and is frequently obtained using various MR sequences. Thus, the purpose of the current study was to quantitatively compare the image quality between MR non-AC (MR NAC) and MR AC in PET images with three MR sequences. Percent image uniformity (PIU), percent contrast recovery (PCR), and percent background variability (PBV) were estimated to evaluate the quality of PET images with MR AC. Based on the results of PIU, 15.2% increase in the average quality was observed for PET images with MR AC than for PET images with MR NAC. In addition, 28.6% and 71.1% improvement in the average results of PCR and PBV respectively, was observed for PET images with MR AC compared with that with MR NAC. Moreover, no significant difference was observed among the average values using three MR sequences. In conclusion, the current study demonstrated that PET with MR AC improved the image quality and can be help diagnosis in all MR sequence cases.

Low-Dose Three-Dimensional Rotational Angiography for Evaluating Intracranial Aneurysms: Analysis of Image Quality and Radiation Dose

  • Hee Jong Ki;Bum-soo Kim;Jun-Ki Kim;Jai Ho Choi;Yong Sam Shin;Yangsean Choi;Na-Young Shin;Jinhee Jang;Kook-jin Ahn
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.256-263
    • /
    • 2022
  • Objective: This study aimed to evaluate the image quality and dose reduction of low-dose three-dimensional (3D) rotational angiography (RA) for evaluating intracranial aneurysms. Materials and Methods: We retrospectively evaluated the clinical data and 3D RA datasets obtained from 146 prospectively registered patients (male:female, 46:100; median age, 58 years; range, 19-81 years). The subjective image quality of 79 examinations obtained from a conventional method and 67 examinations obtained from a low-dose (5-seconds and 0.10-μGy/frame) method was assessed by two neurointerventionists using a 3-point scale for four evaluation criteria. The total image quality score was then obtained as the average of the four scores. The image quality scores were compared between the two methods using a noninferiority statistical testing, with a margin of -0.2 (i.e., score of low-dose group - score of conventional group). For the evaluation of dose reduction, dose-area product (DAP) and air kerma (AK) were analyzed and compared between the two groups. Results: The mean total image quality score ± standard deviation of the 3D RA was 2.97 ± 0.17 by reader 1 and 2.95 ± 0.20 by reader 2 for conventional group and 2.92 ± 0.30 and 2.95 ± 0.22, respectively, for low-dose group. The image quality of the 3D RA in the low-dose group was not inferior to that of the conventional group according to the total image quality score as well as individual scores for the four criteria in both readers. The mean DAP and AK per rotation were 5.87 Gy-cm2 and 0.56 Gy, respectively, in the conventional group, and 1.32 Gy-cm2 (p < 0.001) and 0.17 Gy (p < 0.001), respectively, in the low-dose group. Conclusion: Low-dose 3D RA was not inferior in image quality and reduced the radiation dose by 70%-77% compared to the conventional 3D RA in evaluating intracranial aneurysms.

Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • v.46 no.4
    • /
    • pp.245-249
    • /
    • 2016
  • Purpose: This study was designed to evaluate differences in the required visibility of anatomic structures according to the diagnostic tasks of implant planning and periapical diagnosis. Materials and Methods: Images of a real skull phantom were acquired under 24 combinations of different exposure conditions in a cone-beam computed tomography scanner (60, 70, 80, 90, 100, and 110 kV and 4, 6, 8, and 10 mA). Five radiologists evaluated the visibility of anatomic structures and the image quality for diagnostic tasks using a 6-point scale. results: The visibility of the periodontal ligament space showed the closest association with the ability to use an image for periapical diagnosis in both jaws. The visibility of the sinus floor and canal wall showed the closest association with the ability to use an image for implant planning. Variations in tube voltage were associated with significant differences in image quality for all diagnostic tasks. However, tube current did not show significant associations with the ability to use an image for implant planning. conclusion: The required visibility of anatomic structures varied depending on the diagnostic task. Tube voltage was a more important exposure parameter for image quality than tube current. Different settings should be used for optimization and image quality evaluation depending on the diagnostic task.

Study on Measuring Geometrical Modification of Document Image in Scanning Process (스캐닝 과정에서 발생하는 전자문서의 기하학적 변형감지에 관한 연구)

  • Oh, Dong-Yeol;Oh, Hae-Seok;Rhew, Sung-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1869-1876
    • /
    • 2009
  • Scanner which is a kind of optical devices is used to convert paper documents into document image files. The assessment of scanned document image is performed to check if there are any modification on document image files in scanning process. In assessment of scanned documents, user checks the degree of skew, noise, folded state and etc This paper proposed to how to measure geometrical modifications of document image in scanning process. In this study, we check the degree of modification in document image file by image processing and we compare the evaluation value which means the degree of modification in each items with OCR success ratio in a document image file. To analyse the correlation between OCR success ratio and the evaluation value which means the degree of modification in each items, we apply Pearson Correlation Coefficient and calculate weight value for each items to score total evaluation value of image modification degrees on a image file. The document image which has high rating score by proposed method also has high OCR success ratio.

Single Image-based Enhancement Techniques for Underwater Optical Imaging

  • Kim, Do Gyun;Kim, Soo Mee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.442-453
    • /
    • 2020
  • Underwater color images suffer from low visibility and color cast effects caused by light attenuation by water and floating particles. This study applied single image enhancement techniques to enhance the quality of underwater images and compared their performance with real underwater images taken in Korean waters. Dark channel prior (DCP), gradient transform, image fusion, and generative adversarial networks (GAN), such as cycleGAN and underwater GAN (UGAN), were considered for single image enhancement. Their performance was evaluated in terms of underwater image quality measure, underwater color image quality evaluation, gray-world assumption, and blur metric. The DCP saturated the underwater images to a specific greenish or bluish color tone and reduced the brightness of the background signal. The gradient transform method with two transmission maps were sensitive to the light source and highlighted the region exposed to light. Although image fusion enabled reasonable color correction, the object details were lost due to the last fusion step. CycleGAN corrected overall color tone relatively well but generated artifacts in the background. UGAN showed good visual quality and obtained the highest scores against all figures of merit (FOMs) by compensating for the colors and visibility compared to the other single enhancement methods.

The Evaluation Model of Aggregate Distribution for Lightweight Concrete Using Image Analysis Method (이미지 분석을 이용한 경량골재 콘크리트의 골재분포 판정기법 개발)

  • Ji, Suk-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, the cross-sectional image has been acquired to evaluate the aggregate distribution affecting quality of lightweight aggregate concrete, and through the binarization method, the study is to calculate the aggregate area of upper and lower sections to develop the method to assess the aggregate distribution of concrete. The acquisition of cross-section image of concrete for the above was available from the cross-sectional photography of cleavage tension of a normal test specimen, and an easily accessible and convenient image analysis software was used for image analysis. As a result, through such image analyses, the proportion of aggregate distribution of upper and lower sections of the test specien could be calculated, and the proportion of aggregate area U/L value of the upper and lower regions of concrete cross-section was calculated, revealing that it could be used as the comprehensive index of aggregate distribution. Moreover, through such method, relatively easy image acquisition methods and analytic methods have been proposed, and this indicated that the development of modeling to assess aggregate distribution quantitatively is available. Based on these methods, it is expected that the extraction of fundamental data to reconsider the connectivity with processes in concrete will be available through quality assessment of quantitative concrete.