References
- Gauvrit JY, Leclerc X, Vermandel M, Lubicz B, Despretz D, Lejeune JP, et al. 3D rotational angiography: use of propeller rotation for the evaluation of intracranial aneurysms. AJNR Am J Neuroradiol 2005;26:163-165
- Hochmuth A, Spetzger U, Schumacher M. Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. AJNR Am J Neuroradiol 2002;23:1199-1205
- Abe T, Hirohata M, Tanaka N, Uchiyama Y, Kojima K, Fujimoto K, et al. Clinical benefits of rotational 3D angiography in endovascular treatment of ruptured cerebral aneurysm. AJNR Am J Neuroradiol 2002;23:686-688
- Sugahara T, Korogi Y, Nakashima K, Hamatake S, Honda S, Takahashi M. Comparison of 2D and 3D digital subtraction angiography in evaluation of intracranial aneurysms. AJNR Am J Neuroradiol 2002;23:1545-1552
- van Rooij WJ, Sprengers ME, de Gast AN, Peluso JP, Sluzewski M. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol 2008;29:976-979 https://doi.org/10.3174/ajnr.A0964
- Anxionnat R, Bracard S, Ducrocq X, Trousset Y, Launay L, Kerrien E, et al. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001;218:799-808 https://doi.org/10.1148/radiology.218.3.r01mr09799
- Soderman M, Holmin S, Andersson T, Palmgren C, Babic' D, Hoornaert B. Image noise reduction algorithm for digital subtraction angiography: clinical results. Radiology 2016;278:962
- Soderman M, Mauti M, Boon S, Omar A, Marteinsdottir M, Andersson T, et al. Radiation dose in neuroangiography using image noise reduction technology: a population study based on 614 patients. Neuroradiology 2013;55:1365-1372 https://doi.org/10.1007/s00234-013-1276-0
- Schneider T, Wyse E, Pearl MS. Analysis of radiation doses incurred during diagnostic cerebral angiography after the implementation of dose reduction strategies. J Neurointerv Surg 2017;9:384-388 https://doi.org/10.1136/neurintsurg-2015-012204
- Honarmand AR, Shaibani A, Pashaee T, Syed FH, Hurley MC, Sammet CL, et al. Subjective and objective evaluation of image quality in biplane cerebral digital subtraction angiography following significant acquisition dose reduction in a clinical setting. J Neurointerv Surg 2017;9:297-301 https://doi.org/10.1136/neurintsurg-2016-012296
- Pearl MS, Torok C, Katz Z, Messina SA, Blasco J, Tamargo RJ, et al. Diagnostic quality and accuracy of low dose 3D-DSA protocols in the evaluation of intracranial aneurysms. J Neurointerv Surg 2015;7:386-390 https://doi.org/10.1136/neurintsurg-2014-011137
- Vano E, Fernandez JM, Sanchez RM, Martinez D, Ibor LL, Gil A, et al. Patient radiation dose management in the follow-up of potential skin injuries in neuroradiology. AJNR Am J Neuroradiol 2013;34:277-282 https://doi.org/10.3174/ajnr.A3211
- Ihn YK, Kim BS, Byun JS, Suh SH, Won YD, Lee DH, et al. Patient radiation exposure during diagnostic and therapeutic procedures for intracranial aneurysms: a multicenter study. Neurointervention 2016;11:78-85 https://doi.org/10.5469/neuroint.2016.11.2.78
- Choi J, Kim B, Choi Y, Shin NY, Jang J, Choi HS, et al. Image quality of low-dose cerebral angiography and effectiveness of clinical implementation on diagnostic and neurointerventional procedures for intracranial aneurysms. AJNR Am J Neuroradiol 2019;40:827-833 https://doi.org/10.3174/ajnr.A6029
- Ki HJ, Kim BS, Kim JK, Choi JH, Shin YS, Choi Y, et al. Low-dose 3D rotational angiography in measuring the size of intracranial aneurysm: in vitro feasibility study using aneurysm phantom. Neurointervention 2021;16:59-63 https://doi.org/10.5469/neuroint.2020.00437
- Lee HJ, Yang PS, Lee SB, Yi JS, Ryu SY, Kim TW, et al. The influence of flush methods on transfemoral catheter cerebral angiography: continuous flush versus intermittent flush. J Vasc Interv Radiol 2016;27:651-657 https://doi.org/10.1016/j.jvir.2015.12.017
- Park IK, Park J, Kim TH, Lee J, Han K, Oh C, et al. Non-inferior low-dose coronary computed tomography angiography image quality with knowledge-based iterative model reconstruction for overweight patients. PLoS One 2018;13:e0209243
- Hausleiter J, Martinoff S, Hadamitzky M, Martuscelli E, Pschierer I, Feuchtner GM, et al. Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 2010;3:1113-1123 https://doi.org/10.1016/j.jcmg.2010.08.016
- Ahn S, Park SH, Lee KH. How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology 2013;267:328-338 https://doi.org/10.1148/radiol.12120725
- Adeeb N, Griessenauer CJ, Patel AS, Moore J, Dolati-Ardejani P, Gupta R, et al. Reliability of dual- vs single-volume reconstruction of three-dimensional digital subtraction angiography for follow-up evaluation of endovascularly treated intracranial aneurysms. Interv Neuroradiol 2016;22:687-692 https://doi.org/10.1177/1591019916663469
- Chun CW, Kim BS, Lee CH, Ihn YK, Shin YS. Patient radiation dose in diagnostic and interventional procedures for intracranial aneurysms: experience at a single center. Korean J Radiol 2014;15:844-849 https://doi.org/10.3348/kjr.2014.15.6.844
- D'Ercole L, Thyrion FZ, Bocchiola M, Mantovani L, Klersy C. Proposed local diagnostic reference levels in angiography and interventional neuroradiology and a preliminary analysis according to the complexity of the procedures. Phys Med 2012;28:61-70 https://doi.org/10.1016/j.ejmp.2010.10.008
- Kim DJ, Park MK, Jung DE, Kang JH, Kim BM. Radiation dose reduction without compromise to image quality by alterations of filtration and focal spot size in cerebral angiography. Korean J Radiol 2017;18:722-728 https://doi.org/10.3348/kjr.2017.18.4.722
- Kahn EN, Gemmete JJ, Chaudhary N, Thompson BG, Chen K, Christodoulou EG, et al. Radiation dose reduction during neurointerventional procedures by modification of default settings on biplane angiography equipment. J Neurointerv Surg 2016;8:819-823 https://doi.org/10.1136/neurintsurg-2015-011891
- Maeng JY, Song Y, Sung YS, Kim TI, Lee DH, Kim TH. Feasibility of ultra-low radiation dose digital subtraction angiography: preliminary study in a simplified cerebral angiography phantom. Interv Neuroradiol 2019;25:589-595 https://doi.org/10.1177/1591019919850302
- Yi HJ, Sung JH, Lee DH, Kim SW, Lee SW. Analysis of radiation doses and dose reduction strategies during cerebral digital subtraction angiography. World Neurosurg 2017;100:216-223 https://doi.org/10.1016/j.wneu.2017.01.004
- Chintalapani G, Chinnadurai P, Maier A, Xia Y, Bauer S, Shaltoni H, et al. The added value of volume-of-interest C-arm CT imaging during endovascular treatment of intracranial aneurysms. AJNR Am J Neuroradiol 2016;37:660-666 https://doi.org/10.3174/ajnr.A4605
- Yang P, Ahmed A, Schafer S, Niemann D, Aagaard-Kienitz B, Royalty K, et al. Low-dose volume-of-interest C-arm CT imaging of intracranial stents and flow diverters. AJNR Am J Neuroradiol 2016;37:648-654 https://doi.org/10.3174/ajnr.A4590
- Lang S, Hoelter P, Schmidt M, Eisenhut F, Kaethner C, Kowarschik M, et al. Evaluation of an artificial intelligence-based 3D-angiography for visualization of cerebral vasculature. Clin Neuroradiol 2020;30:705-712 https://doi.org/10.1007/s00062-019-00836-7