• 제목/요약/키워드: Evaluation indoor air environment

검색결과 163건 처리시간 0.031초

건물 냉방시스템의 예측제어를 위한 인공신경망 모델 개발 (Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems)

  • 강인성;양영권;이효은;박진철;문진우
    • KIEAE Journal
    • /
    • 제17권5호
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.

중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가 (Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses)

  • 김봉훈;서승록
    • 대한인간공학회지
    • /
    • 제17권3호
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF

국내 초고층 주거의 친환경적 실내 공간 계획 및 개선방안 연구 - 친환경 건축 인증 제도에 의한 사례 분석을 중심으로 - (A Study on the Improvement and Environment-friendly Interior Space Planning of High-rise Residences in Korea - focuesd on the case analysis by environment-friendly architectural certification -)

  • 김자경
    • 한국실내디자인학회논문집
    • /
    • 제17권3호
    • /
    • pp.23-33
    • /
    • 2008
  • After the concept of apartments was introduced in 1960s in Korea, on account of the development of architectural technology and science, high-rise residences in Korea are getting higher, and these residences have been becoming high-rise commercial/residential buildings since 1990. Nowadays, as the construction of high-rise commercial residential building complex is booming, the difference between these complex and high-rise apartments is getting smaller, and these two kind of high-rise residences are becoming new residential style in Korea. And these high-rise residences are considered the symbol of wealth owing to the marketing strategy emphasizing high quality, refined interior, a fair view, and the protection of privacy. However, high-rise residences bring about many problems related to health and psychology caused by the consumption of a large amount of energy, pollutant emission, the deterioration of the quality of indoor air, and vibration. For this reason, in this study, we tried to emphasize the necessity of environment-friendly access to provide healthy living environment and to reduce the negative effect of housing life in high-rise residences, and find the method to improve environment-friendly quality and health of residents in interior space. Therefore, this study aims to detect the problems and the items to be improved of interior spaces of high-rise residences by quantitative, qualitative analysis of the evaluation elements and the floor planning elements deduced from environment-friendly architectural certification in Korea and the other countries, and suggest the guideline to improve the environment-friendly quality of these interior spaces.

벽체구성에 따른 목조벽체 내 수분변화에 대한 연구(I) - 실내 실험을 통한 개선 가능성 평가 - (Study on Moisture Variation in Light Frame Wall with Different Wall Assemblies (I) - Evaluation of Improvement with Laboratory Test -)

  • 김세종;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권4호
    • /
    • pp.320-329
    • /
    • 2009
  • 본 연구는 경골목조벽체의 구조적 안전성을 위협하고 주거환경을 열악하게 하는 벽체 내 수분축적을 감소시키기 위해 수행되었다. 이를 위해 벽체 구성 요소를 변화시켜 실험을 진행하였다. 벽체 구성요소는 방습지 및 공기층을 추가하였고, 이들의 변화에 따른 수분이동의 변화를 조사하기 위하여 실내외 온습도 차이가 뚜렷한 가혹조건에서 기본벽체와 제안벽체의 비교실험을 진행하였다. 실험결과 실내 측 방습지 추가로 방습성능을 높이는 것은 실내로부터의 수분이동 감소에 효과적으로 나타났지만 두 개의 방습지를 설치하는 경우 과도한 방습 성능이나 부적절한 위치선정으로 벽체의 내부의 상대습도를 높이는 것으로 나타났다. 공기층 추가는 환기 효과에 의해 벽체 내부에서 실외로 수분이동을 야기하였다. 공기층에 의해 실내로부터 벽체 내부로 유입되는 수분이동을 막을 대안을 찾는다면 환기에 의한 벽체 내 수분감소 효과를 극대화 할 수 있을 것으로 기대된다.

공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001-)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가 (Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System)

  • 박신영;윤단기;장혁;윤성원;이철민
    • 한국환경보건학회지
    • /
    • 제49권4호
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

나노버블을 이용한 지하철용 전기집진기 포집먼지에 대한 세척효율 평가 (Evaluation of Washing Efficiency of Collective PM by Electrostatic Precipitator in Subway Station Using Nano Bubble)

  • 이형돈;이승환;박찬규
    • 청정기술
    • /
    • 제26권1호
    • /
    • pp.13-21
    • /
    • 2020
  • 지하역사 내 대기오염물질은 외부에서 유입되거나 또는 지하철 내부의 승객 승·하차 시 발생하는 등 여러 가지 요인에 의해 복합적으로 발생한다. 최근 연구 결과에 따르면, 지하역사 내 터널 및 지하철역에서 발생하는 대부분의 대기오염물질은 열차풍에 의해 발생되는 것과 같이 내부적 요인에 많은 영향을 많이 받는 것으로 알려져 있다. 이러한 대기오염물질을 제어하기 위해서는 지하철역사 내에 전기집진장치와 같은 집진시설이 필요하며, 집진장치에 의해 제거된 미세먼지를 보다 효율적으로 관리하기 위해서는 집진장치 내부에 지속적인 세척이 필수적이다. 따라서 본 연구에서는 지하역사에 설치할 전기집진장치 내부 집진판에 쌓인 미세먼지를 세척하기 위한 나노버블세척 장치를 개발하였고 나노버블수의 먼지세척효율을 평가하고자 하였다. 실험 결과, 분사압 증가에 따라 세척 효율이 일정하게 증가하였고 나노버블수로 세척할 경우 수돗물로 세척한 경우보다 부착먼지 제거효율이 130.8% 더 증가하였다. 세척횟수 증가에 따라 최대 제거효율은 수돗물에 비해 143.1% 높았지만 적합한 세척횟수는 3회 미만인 것으로 나타났다. 또한 나노버블수 체류시간 변화에 따른 세척효율 실험결과, 나노버블수의 최대 체류시간은 5분 이내로 유지됨을 확인하였다.

다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구 (Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility)

  • 김태한;최부헌
    • 한국조경학회지
    • /
    • 제48권5호
    • /
    • pp.80-88
    • /
    • 2020
  • 2019년 3월 미세먼지 비상저감조치가 일주일 동안 발령되면서, 미세먼지로 인한 국민의 불안감은 점차 가중되고 있다. 본 연구는 공기정화식물이 적용된 바이오필터의 다중이용시설 내 적용성 평가를 위해 입자상 오염원의 실내 연속방출환경을 조성하여 오염원 저감효과에 대한 측정방법을 제안하고, 시스템의 실내공기질 개선 여부를 확인할 수 있는 기초연구를 진행하였다. 강의실을 대상으로 춘절기에 모니터링 1시간 전 모기향을 오염원으로 배경농도를 조성한 후, 스케줄에 따라 2시간 관수, 1시간 송풍하여 미세먼지의 저감능을 확인하였으며, 바이오필터 2m 전방에 PM10, PM2.5 및 온습도 센서를 설치하고, 3개 송풍구 중 중앙에 풍속 프로브를 설치하여 시계열 모니터링을 수행하였다. 바이오필터에 구비된 총 3개소의 송풍구 평균 면풍속은 0.38±0.16 m/s로 댐퍼 면적이 제외된 송풍구별 면적 0.29m×0.65m을 적용한 총 공조풍량이 776.89±320.16㎥/h로 산출되었다. 시스템 가동으로 평균온도 21.5~22.3℃, 평균상대습도 63.79~73.6%를 유지하여, 선행연구의 다양한 조건별 온습도 범위에 부합하는 것으로 판단된다. 시스템 공조부 구동을 통해 급격하게 상대습도를 상승시키는 효과를 효율적으로 운용할 경우, 계절에 따른 실내 미세먼지 저감과 적정한 상대습도 확보도 가능할 것으로 판단된다. 미세먼지 농도는 바이오필터 시스템 가동 전의 모든 주기에서 상승 현상이 동일하게 집계되었으며, 시스템 가동 후 1주기 송풍구간(B-1, β=-3.83, β=-2.45)에서 미세먼지(PM10)는 최대 28.8% 수준인 560.3㎍/㎥, 초미세 먼지(PM2.5)는 최대 28.0% 수준인 350.0㎍/㎥까지 저감되었다. 이후 미세먼지(PM10, PM2.5)의 농도는 2주기 송풍구간 감소(B-2, β=-5.50, β=-3.30)로 각각 최대 32.6% 수준인 647.0㎍/㎥, 32.4% 수준인 401.3㎍/㎥까지 저감되었고, 3주기 송풍구간감소(B-3, β=5.48, β=-3.51)로 최대 30.8% 수준인 732.7㎍/㎥, 31.0% 수준인 459.3㎍/㎥까지 저감된 것으로 확인되었다. 본 연구는 식생 바이오필터의 다중이용시설 내 설치와 유관한 관련 표준 및 규정을 참조하여, 객관적인 성능평가환경의 구축 방안을 제시할 수 있었다. 이를 통해 일반 강의실 환경 내에 보다 객관화된 모니터링 인프라를 조성하여, 상대적으로 신뢰성 있는 데이터 확보가 가능했던 것으로 판단된다.

자연환기 벤틸레이터의 댐퍼 형태별 환기량 조절능력 평가 (Evaluation of Airflow Control Capability of Natural Ventilators with Various Dampers)

  • 김태형;하현철;박승철
    • 한국산업보건학회지
    • /
    • 제16권4호
    • /
    • pp.364-374
    • /
    • 2006
  • Natural ventilation technique could be the substitute for or the complement to the local exhaust ventilation system in the sense of protecting work environment. Moreover, it has many strong points ; almost no mechanical parts, no energy use and no noise. If applied appropriately, it could have the very high ventilation rate and save a lot of energy expense. But, it depends on the outdoor environment, especially temperature and wind speed/direction. Predicting the capacity of natural ventilation is not an easy job because it comes from both buoyancy and wind effect. Another problem is too much flow through the ventilator especially in winter time due to too much difference between indoor and outdoor temperature. Thus some ventilators in industries are sealed by door or plastic sheet, resulting in bad work environment. Various types of dampers are used to control the flow rate through ventilators. The capabilities of flow control by damper has not been estimated. In addition, it was not tested whether the damper could obstruct the flow through ventilator when fully opened. To answer these questions, 4 types of dampers were tested by using computational fluid dynamics. 10 different configurations includes no damper, full open and half open. Flow rates were estimated and airflow fields were analysed to clarify the before-mentioned questions. The dual type damper was the best choice for controling the capability of ventilator. In addition, the upward grill type damper was the best for not obstructing the air flow when fully opened.

모세유관 바닥복사 냉·난방 시스템의 성능평가 (Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System)

  • 서유진;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.