DOI QR코드

DOI QR Code

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility

다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구

  • Kim, Tae-Han (Dept. of Environmental Landscape Architecture, Sangmyung University) ;
  • Choi, Boo-Hun (Dept. of Environmental Landscape Architecture, Graduate School, Sangmyung University)
  • 김태한 (상명대학교 환경조경학과) ;
  • 최부헌 (상명대학교 대학원 환경자원학과)
  • Received : 2020.08.10
  • Accepted : 2020.10.08
  • Published : 2020.10.31

Abstract

With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

2019년 3월 미세먼지 비상저감조치가 일주일 동안 발령되면서, 미세먼지로 인한 국민의 불안감은 점차 가중되고 있다. 본 연구는 공기정화식물이 적용된 바이오필터의 다중이용시설 내 적용성 평가를 위해 입자상 오염원의 실내 연속방출환경을 조성하여 오염원 저감효과에 대한 측정방법을 제안하고, 시스템의 실내공기질 개선 여부를 확인할 수 있는 기초연구를 진행하였다. 강의실을 대상으로 춘절기에 모니터링 1시간 전 모기향을 오염원으로 배경농도를 조성한 후, 스케줄에 따라 2시간 관수, 1시간 송풍하여 미세먼지의 저감능을 확인하였으며, 바이오필터 2m 전방에 PM10, PM2.5 및 온습도 센서를 설치하고, 3개 송풍구 중 중앙에 풍속 프로브를 설치하여 시계열 모니터링을 수행하였다. 바이오필터에 구비된 총 3개소의 송풍구 평균 면풍속은 0.38±0.16 m/s로 댐퍼 면적이 제외된 송풍구별 면적 0.29m×0.65m을 적용한 총 공조풍량이 776.89±320.16㎥/h로 산출되었다. 시스템 가동으로 평균온도 21.5~22.3℃, 평균상대습도 63.79~73.6%를 유지하여, 선행연구의 다양한 조건별 온습도 범위에 부합하는 것으로 판단된다. 시스템 공조부 구동을 통해 급격하게 상대습도를 상승시키는 효과를 효율적으로 운용할 경우, 계절에 따른 실내 미세먼지 저감과 적정한 상대습도 확보도 가능할 것으로 판단된다. 미세먼지 농도는 바이오필터 시스템 가동 전의 모든 주기에서 상승 현상이 동일하게 집계되었으며, 시스템 가동 후 1주기 송풍구간(B-1, β=-3.83, β=-2.45)에서 미세먼지(PM10)는 최대 28.8% 수준인 560.3㎍/㎥, 초미세 먼지(PM2.5)는 최대 28.0% 수준인 350.0㎍/㎥까지 저감되었다. 이후 미세먼지(PM10, PM2.5)의 농도는 2주기 송풍구간 감소(B-2, β=-5.50, β=-3.30)로 각각 최대 32.6% 수준인 647.0㎍/㎥, 32.4% 수준인 401.3㎍/㎥까지 저감되었고, 3주기 송풍구간감소(B-3, β=5.48, β=-3.51)로 최대 30.8% 수준인 732.7㎍/㎥, 31.0% 수준인 459.3㎍/㎥까지 저감된 것으로 확인되었다. 본 연구는 식생 바이오필터의 다중이용시설 내 설치와 유관한 관련 표준 및 규정을 참조하여, 객관적인 성능평가환경의 구축 방안을 제시할 수 있었다. 이를 통해 일반 강의실 환경 내에 보다 객관화된 모니터링 인프라를 조성하여, 상대적으로 신뢰성 있는 데이터 확보가 가능했던 것으로 판단된다.

Keywords

References

  1. Bae, H. J.(2014) Effects of short-term exposure to $PM_{10}$ and $PM_{2.5}$ on mortality in Seoul. Journal of Environmental Health Sciences 40(5): 346-354.
  2. Choi, J. I. and Y. S. Lee(2015) A study on the impact of $PM_{2.5}$ emissions on respiratory diseases. Journal of Environmental Policy and Administration 23(4): 155-172. https://doi.org/10.15301/jepa.2015.23.4.155
  3. Choi, S. Y., K. Y. Han and B. H. Kim(2012) Comparison of different multiple linear regression models for real-time flood stage forecasting. Journal of the Korean Society of Civil Engineers 32(18): 9-20.
  4. Kim, K. J., H. H. Jung, J. H. Kim, and H. J. Kim(2014) Indoor Air Purifying Plants. National Institute of Horticultural and Herbal Science.
  5. Kim, K. J., M. J. Kil, M. I. Jeong, H. D. Kim, E. H. Yoo, S. J. Jeong, C. H. Pak and K. C. Son(2009) Determination of the efficiency of formaldehyde removal according to the percentage volume of pot plants occupying a room. Kor. J. Hort. Sci. Technol. 27(2): 305-311.
  6. Kim, T. H., B. H. Choi, N. H. Choi and E. S. Jang(2018a) Particulate matter and $CO_2$ improvement effects by vegetation-based bio-filters and the indoor comfort index analysis. Korean Journal of Environmental Agriculture 37(4): 268-276. https://doi.org/10.5338/KJEA.2018.37.4.41
  7. Kim, T. H., J. M. Park and S. C. Kim(2018b) The indoor air purification system using LED and fan for epipremnum aureum. Journal of the Institute of Convergence Signal Processing 19(4):167-173.
  8. KS C 9314:2013 Air cleaners.
  9. Kwon, K. J. and B. J. Park(2017) Effects of indoor greening method on temperature, relative humidity and particulate matter concentration. Journal of Korean Institute of Landscape Architecture 45(4): 1-10. https://doi.org/10.9715/KILA.2017.45.1.001
  10. Kwon, K. J. and B. J. Park(2018) Particulate matter removal of indoor plants, dieffenbachia amoena 'Marianne' and spathiphyllum spp. according to light intensity. Journal of Korean Institute of Landscape Architecture 46(2): 62-68. https://doi.org/10.9715/KILA.2018.46.2.062
  11. Lee, C. H., B. Choi and M. Y. Chun(2015) Stabilizing soil moisture and indoor air quality purification in a wall-typed botanical biofiltration system controlled by hidifying cycle. Korean Journal of Horticultural Science & Technology 33(4): 605-617. https://doi.org/10.7235/hort.2015.15047
  12. Lee, Y. J.(2017) Designing Space for Improvement of Age-specific Concentration and Comfort by CFD Interpretation of Temperature and Humidity Change in Apartment. Master's Thesis. Gachon Univ.
  13. Pettit, T., P. J. Irga, P. Abdo, F. R. Torpy(2017) Do the plants in functional green walls contribute to their ability to filter particulate matter?. Building and Environment 125: 299-307. https://doi.org/10.1016/j.buildenv.2017.09.004
  14. Saebo. A., R. Popek, B. Nawrot, H. M. Hanslin, H. Gawronska and S. W. Gawronski(2012) Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment, 427-428: 347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  15. SAREK A101-2011 Duct Airflow Measuring Method.
  16. Soreanu, G. M. Dixon and A. Darlington(2013) Botanical biofiltration of indoor gaseous pollutants - A mini-review -. Chem. Eng. J. 229:585-594. https://doi.org/10.1016/j.cej.2013.06.074
  17. Wang, Z. and J. S. Zhang(2011) Characterization and performance evaluation of a full scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 46:758-768. https://doi.org/10.1016/j.buildenv.2010.10.008
  18. Wang. L., H. Gong, W. Liao and Z. Wang(2015) Accumulation of particles on the surface of leaves during leaf expansion. The Science of the Total Environment 532: 420-434. https://doi.org/10.1016/j.scitotenv.2015.06.014
  19. 건축물설비기준규칙 제11조 제4항 (2013).
  20. http://www.bio-wall.co.kr/garden4u_2013/