• 제목/요약/키워드: Euler-Bernoulli beam

검색결과 425건 처리시간 0.027초

Exact natural frequencies of structures consisting of two-part beam-mass systems

  • Su, H.;Banerjee, J.R.
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.551-566
    • /
    • 2005
  • Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first approach is based on matrix transformation while the second one is a direct approach in which the kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentially a structural member consisting of two different beam segments between which there is a rigid mass element that may have rotatory inertia. Numerical checks to show that the two methods generate identical dynamic stiffness matrices were performed for a wide range of frequency values. Once the dynamic stiffness matrix is obtained using any of the two methods, the Wittrick-Williams algorithm is applied to compute the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results are discussed and the paper concludes with some remarks.

집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석 (Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass)

  • 이정우;곽종훈;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.

끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석 (Stability Analysis of Cracked Cantilever Beam with Tip Mass and Follower Force)

  • 손인수;윤한익;안태수
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.605-610
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

Dynamic response of a Timoshenko beam on a tensionless Pasternak foundation

  • Coskun, Irfan;Engin, Hasan;Tekin, Ayfer
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.489-507
    • /
    • 2011
  • The dynamic response of a Timoshenko beam on a tensionless Pasternak foundation is investigated by assuming that the beam is subjected to a concentrated harmonic load at its middle. This action results in the creation of lift-off regions between the beam and the foundation that effect the character of the response. Although small displacements for the beam and the foundation are assumed, the problem becomes nonlinear since the contact/lift-off regions are not known at the outset. The governing equations of the beam, which are coupled in deflection and rotation, are obtained in both the contact and lift-off regions. After removing the coupling, the essentials of the problem (the contact regions) are determined by using an analytical-numerical method. The results are presented in figures to demonstrate the effects of some parameters on the extent of the contact lengths and displacements. The results are also compared with those of Bernoulli-Euler, shear, and Rayleigh beams. It is observed that the solution is not unique; for a fixed value of the frequency parameter, more than one solution (contact length) exists. The contact length of the beam increases with the increase of the frequency and rotary-inertia parameters, whereas it decreases with increasing shear foundation parameter.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

Vibration analysis of micro composite thin beam based on modified couple stress

  • Ehyaei, Javad;Akbarizadeh, M. Reza
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.403-411
    • /
    • 2017
  • In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.