Browse > Article
http://dx.doi.org/10.12989/sem.2017.64.4.403

Vibration analysis of micro composite thin beam based on modified couple stress  

Ehyaei, Javad (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University)
Akbarizadeh, M. Reza (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University)
Publication Information
Structural Engineering and Mechanics / v.64, no.4, 2017 , pp. 403-411 More about this Journal
Abstract
In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.
Keywords
composite laminated beam; modified couple stress theory; elastic foundation; generalized differential quadrature;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165.   DOI
2 Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294.   DOI
3 Akgoz, B. and Civalek, O. (2015), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20.   DOI
4 Akgoz, B. and Civalek, O. (2015), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301.   DOI
5 Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212.   DOI
6 Au, F.T.K., Zheng, D.Y. and Cheung, Y.K., (1999), "Vibration and stability of non-uniform beams with abrupt changes of cross-section by using C 1 modified beam vibration functions", Appl. Math. Model., 23(1), 19-34.   DOI
7 Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431.   DOI
8 Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283.   DOI
9 Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786.   DOI
10 Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275.   DOI
11 Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630.   DOI
12 Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335.   DOI
13 Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater, 15(6), 671-703.   DOI
14 Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104.   DOI
15 Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422.   DOI
16 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249.   DOI
17 Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423.   DOI
18 Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082.   DOI
19 Chen, W., Li, L. and Xu, M., (2011), "A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation", Compos. Struct., 93(11), 2723-2732.   DOI
20 Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444.   DOI
21 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297.   DOI
22 Thambiratnam, D. and Zhuge, Y. (1996), "Free vibration analysis of beams on elastic foundation", Comput. Struct., 60(6), 971-980.   DOI
23 Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solid., 46(3), 411-425.   DOI
24 Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355.   DOI
25 Pradhan, S.C. and T. Murmu, (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1), 342-362.   DOI
26 Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565.   DOI
27 Ghadiri, M., Zajkani, A. and Akbarizadeh, M.R. (2016), "Thermal effect on dynamics of thin and thick composite laminated microbeams by modified couple stress theory for different boundary conditions", Appl. Phys. A, 122(12), 1023.   DOI
28 Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690.   DOI
29 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
30 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248   DOI
31 Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240   DOI
32 Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253.   DOI
33 Herakovich, C.T. (2012), "Mechanics of composites: a historical review", Mech. Res. Commun., 41, 1-20.   DOI
34 Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219.   DOI
35 Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rat. Mech. Anal., 11(1), 385-414.   DOI
36 Wanji, C., Chen, W. and Sze, K.Y. (2012), "A model of composite laminated Reddy beam based on a modified couple-stress theory", Compos. Struct., 94(8), 2599-2609.   DOI
37 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743.   DOI
38 Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710.   DOI
39 Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276.   DOI
40 Zhou, D. (1993), "A general solution to vibrations of beams on variable Winkler elastic foundation", Comput. Struct., 47(1), 83-90.   DOI
41 Jahangiri, R., Jahangiri, H. and Khezerloo, H., (2015), "FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory", Steel Compos. Struct., 18(6), 1541-1555.   DOI
42 Kapania, R.K. and Raciti, S. (1989), "Recent advances in analysis of laminated beams and plates, Part I-Shear effects and buckling", AIAA J., 27(7), 923-935.   DOI
43 Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431.   DOI
44 Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508.   DOI
45 Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228(2), 359-376.   DOI
46 Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exper. Mech., 3(1), 1-7.   DOI
47 Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rat. Mech. Anal., 16(1), 51-78.   DOI
48 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rat. Mech. Anal., 11(1), 415-448.   DOI
49 Mohammad-Abadi, M. and Daneshmehr, A.R. (2015), "Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories",, Int. J. Eng. Sci., 87, 83-102.   DOI