• Title/Summary/Keyword: Euler-Bernoulli beam

Search Result 425, Processing Time 0.024 seconds

Free Vibrations of Compressive Members Resting on Linear Elastic Foundation (선형 탄성지반 위에 놓인 압축부재의 자유진동)

  • 이병구;이광범;모정만;신성철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study

  • AlSaid-Alwan, Hiyam Hazim Saeed;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • In engineering structures, to having the projected structure to serve all the engineering purposes, the theory to be used during the modeling stage is also of great importance. In the present work, an analytical solution of the free vibration of the beam composed of functionally graded materials (FGMs) is presented utilizing different beam theories. The comparison of supposed beam theory for free vibration of functionally graded (FG) beam is examined. For this aim, Euler-Bernoulli, Rayleigh, Shear, and Timoshenko beam theories are employed. The functionally graded material properties are assumed to vary continuously through the thickness direction of the beam with respect to the volume fraction of constituents. The governing equations of free vibration of FG beams are derived in the frameworks of four beam theories. Resulting equations are solved versus simply supported boundary conditions, analytically. To verify the results, comparisons are carried out with the available results. Parametrical studies are performed for discussing the effects of supposed beam theory, the variation of beam characteristics, and FGM properties on the free vibration of beams. In conclusion, it is found that the interaction between FGM properties and the supposed beam theory is of significance in terms of free vibration of the beams and that different beam theories need to be used depending on the characteristics of the beam in question.

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.

A Novel Methodology of Improving Stress Prediction via Saint-Venant's Principle (생브낭의 원리를 이용한 응력해석 개선)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a methodology is proposed to improve the stress prediction of plates via Saint Venant's principle. According to Saint Venant's principle, the stress resultants can be used to describe linear elastic problems. Many engineering problems have been analyzed by Euler-Bernoulli beam(E-B) and/or Kirchhoff-Love(K-L) plate models. These models are asymptotically correct, and therefore, their accuracy is mathematically guaranteed for thin plates or slender beams. By post-processing their solutions, one can improve the stresses and displacements via Saint Venant's principle. The improved in-plane and out-of-plane displacements are obtained by adding the perturbed deflection and integrating the transverse shear strains. The perturbed deflection is calculated by applying the equivalence of stress resultants before and after post-processing(or Saint Venant's principle). Accuracy and efficiency of the proposed methodology is verified by comparing the solutions obtained with the elasticity solutions for orthotropic beams.

Verification of an Analysis Method for Maglev Train-Guideway Interaction Using Field Measurement Data (현장 계측치와의 비교를 통한 자기부상열차-가이드웨이 상호작용 해석기법 검증)

  • Lee, Jin Ho;Kim, Lee Hyun;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.233-244
    • /
    • 2014
  • In this study, an analysis method for maglev train-guideway interaction is verified using field measurement data. The cabin and bogies of the maglev train are modeled as rigid bodies that are allowed to have heave and pitch motions. Levitation forces from the electromagnetic suspensions on the bogies are controlled using an active control algorithm. The guideway is represented using the Euler-Bernoulli beam. Considering rigorously the changes in air-gaps and material points at which the levitation forces are applied due to the pitch motions of the bogies, dynamic analysis of maglev train-guideway interaction is performed. Using field measurement data, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. Accuracy of the analysis method is investigated. It is determined that the structures in the railway are designed and constructed safely according to the design code for maglev railways.

Effective mode shapes of multi-storey frames subjected to moving train loads

  • Demirtas, Salih;Ozturk, Hasan
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.311-323
    • /
    • 2020
  • This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical direction.

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.965-970
    • /
    • 2002
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a wide range of section ratio, dimensionless spring constant and mass ratio.

  • PDF