• Title/Summary/Keyword: Euler beam model

Search Result 204, Processing Time 0.021 seconds

Modelling and experimental investigations on stepped beam with cavity for energy harvesting

  • Reddya, A. Rami;Umapathy, M.;Ezhilarasib, D.;Uma, G.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.623-640
    • /
    • 2015
  • This paper presents techniques to harvest higher voltage from piezoelectric cantilever energy harvester by structural alteration. Three different energy harvesting structures are considered namely, stepped cantilever beam, stepped cantilever beam with rectangular and trapezoidal cavity. The analytical model of three energy harvesting structures are developed using Euler-Bernoulli beam theory. The thickness, position of the rectangular cavity and the taper angle of the trapezoidal cavity is found to shift the neutral axis away from the surface of the piezoelectric element which in turn increases the generated voltage. The performance of the energy harvesters is evaluated experimentally and is compared with regular piezoelectric cantilever energy harvester. The analytical and experimental investigations reveal that, the proposed energy harvesting structures generate higher output voltage as compared to the regular piezoelectric cantilever energy harvesting structure. This work suggests that through simple structural modifications higher energy can be harvested from the widely reported piezoelectric cantilever energy harvester.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

  • Hamza Hameed;Sadia Munir;F.D. Zaman
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.19-40
    • /
    • 2024
  • The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Free Vibration Characteristics of Partially Embedded Piles (부분근입된 말뚝의 자유진동 특성)

  • 신성철;진태기;오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.435-440
    • /
    • 2002
  • The free vibration of partially embedded piles is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equation for the free vibrations of such members is solved numerically The piles with one typical end constraint (clamped/hinged/free) and the other hinged end with rotational spring are applied in numerical examples. The lowest three natural frequencies are calculated over a range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness and the embedded ratio.

  • PDF

Dynamic Characteristic Analysis of a Flexible Beam Actuated by Moving Coil and DC Motor (가동 코일 및 DC Motor로 작동되는 유연한 빔의 운동 특성 해석)

  • Yu, Hwajoon;Jeong, Wontaick;Nam, Yoonsu
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.15-23
    • /
    • 1999
  • Active damping system is generally used for the vibration suppression and precise motion control for the flexible structure. This application can be easily found on the space structure and driving mechanism of optical storage devices. Although a control system using the flexible structure has many advantages over using rigid mechanism in driving energy saving, system weights, and etc., more complex and precise control strategies are required. A position control system using flexible structure and the concept of active damper is designed and manufactured, which is driven by slide DC motor and moving coil motor located at the tip of the flexible beam. Dynamic characteristics of this system are investigated by analytic and experimental ways. By the comparison of those two results, a nominal reference model for this system is proposed.

  • PDF

A new broadband energy harvester using propped cantilever beam with variable overhang

  • Usharani, R.;Uma, G.;Umapathy, M.;Choi, S.B.
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.567-576
    • /
    • 2017
  • Design of piezoelectric energy harvester for a wide operating frequency range is a challenging problem and is currently being investigated by many researchers. Widening the operating frequency is required, as the energy is harvested from ambient source of vibration which consists of spectrum of frequency. This paper presents a new technique to increase the operating frequency range which is achieved by designing a harvester featured by a propped cantilever beam with variable over hang length. The proposed piezoelectric energy harvester is modeled analytically using Euler Bernoulli beam theory and the effectiveness of the harvester is demonstrated through experimentation. The results from analytical model and from experimentation reveal that the proposed energy harvester generates an open circuit output voltage ranging from 36.43 V to 11.94 V for the frequency range of 27.24 Hz to 48.47 Hz. The proposed harvester produces continuously varying output voltage and power in the broadened operating frequency range.

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • Gang, Yu-Jin;Sim, Ji-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.15-33
    • /
    • 2016
  • In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

Effects of porosity models on static behavior of size dependent functionally graded beam

  • Hamed, Mostafa A.;Sadoun, Ayman M.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.89-98
    • /
    • 2019
  • In this study, the mechanical bending behaviors of functionally graded porous nanobeams are investigated. Four types of porosity which are, the classical power porosity function, the symmetric with mid-plane cosine function, bottom surface distribution and top surface distribution are proposed in analysis of nanobeam for the first time. A comparison between four types of porosity are illustrated. The effect of nano-scale is described by the differential nonlocal continuum theory of Eringen by adding the length scale into the constitutive equations as a material parameter comprising information about nanoscopic forces and its interactions. The graded material is designated by a power function through the thickness of nanobeam. The beam is simply-supported and is assumed to be thin, and hence, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Numerical results show effects of porosity type, material graduation, and nanoscale parameters on the static deflection of nanobeam.