Browse > Article
http://dx.doi.org/10.12989/sss.2015.16.4.623

Modelling and experimental investigations on stepped beam with cavity for energy harvesting  

Reddya, A. Rami (Department of Instrumentation and Control Engineering, National Institute of Technology)
Umapathy, M. (Department of Instrumentation and Control Engineering, National Institute of Technology)
Ezhilarasib, D. (Department of Instrumentation and Control Engineering, National Institute of Technology)
Uma, G. (Department of Instrumentation and Control Engineering, National Institute of Technology)
Publication Information
Smart Structures and Systems / v.16, no.4, 2015 , pp. 623-640 More about this Journal
Abstract
This paper presents techniques to harvest higher voltage from piezoelectric cantilever energy harvester by structural alteration. Three different energy harvesting structures are considered namely, stepped cantilever beam, stepped cantilever beam with rectangular and trapezoidal cavity. The analytical model of three energy harvesting structures are developed using Euler-Bernoulli beam theory. The thickness, position of the rectangular cavity and the taper angle of the trapezoidal cavity is found to shift the neutral axis away from the surface of the piezoelectric element which in turn increases the generated voltage. The performance of the energy harvesters is evaluated experimentally and is compared with regular piezoelectric cantilever energy harvester. The analytical and experimental investigations reveal that, the proposed energy harvesting structures generate higher output voltage as compared to the regular piezoelectric cantilever energy harvesting structure. This work suggests that through simple structural modifications higher energy can be harvested from the widely reported piezoelectric cantilever energy harvester.
Keywords
energy harvesting; piezoelectric; stepped beam; rectangular cavity; trapezoidal cavity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Magoteaux, K.C., Sanders, B. and Sodano, A.H. (2008), "Investigation of energy harvesting small unmanned air vehicle", Smart Materials and Structures: Active and Passive Smart Structures and Integrated Systems II, Proceedings of the SPIE, San Diego, CA.
2 Mehraeen, S., Jagannathan, S. and Corzine, K.A. (2010), "Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam", IEEE T. Ind. Electron., 57(3), 820-830.   DOI
3 Paquin, S. and St-Amant, Y. (2010), "Improving the performance of a piezoelectric energy harvester using a variable thickness beam", Smart Mater. Struct., 19(10), 105020 (14pp).   DOI
4 Park, J., Lee, S. and Kwak, B.M. (2012), "Design optimization of piezoelectric energy harvester subject to tip excitation", J. Mech. Sci. Technol., 26(1), 137-143.   DOI   ScienceOn
5 Priya, S. (2007), "Advances in energy harvesting using low profile piezoelectric transducers", J. Electroceram, 19, 165-182.
6 Salehi-Khojin, A., Bashash, S. and Jalili, N. (2008), "Modeling and experimental vibration analysis of nano mechanical cantilever active probes", J. Micromech. Microeng., 18(8), 085008.   DOI
7 Sodano, H.A. and Inamn, D.J. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36(3), 197-205.   DOI
8 Wang, Q. and Wu, N. (2012), "Optimal design of a piezoelectric coupled beam for power harvesting", Smart Mater. Struct., 21(8), 085013.   DOI
9 Abdelkefi, A. and Barsallo, N. (2014), "Comparative modelling of low-frequency piezomagnetoelastic energy harvesters", J. Intel.Mat. Syst. Str., DOI:10.1177/1045389X14523860.   DOI
10 Abdelkefi, A. and Ghommem, M. (2013), "Piezoelectric energy harvesting from morphing wing motions for micro air vehicles", Theor. Appl. Mech. Lett., 3, 052001.   DOI
11 Abdelkefi, A., Nayfeh, A.H., Hajj, M.R. and Najar, F. (2012), "Energy harvesting from a multi frequency response of a tuned bending-torsion system", Smart Mater. Struct., 21(7), 075029.   DOI
12 Carlos De Marqui, J, Erturk, A. and Inman, D.J. (2009), "An electromechanical finite element model for piezoelectric energy harvester plates", J. Sound Vib., 327, 9-25.   DOI
13 Barker, S., Brennan, D., Wright, N.G. and Horsfall, A.B. (2011), "Piezoelectric-powered wireless sensor system with regenerative transmit mode", Inst. Eng. Technol., 1, 31-38.
14 Ben Ayed, S., Abdelkefi, A., Najar, F. and Hajj, M.R. (2014), "Design and performance of variable-shaped piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 25,174-186.   DOI
15 Benasciutti, D., Moro, L., Zelenika, S. and Brusa, E. (2010), "Vibration energy scavenging via piezoelectric bimorphs of optimized shapes", Microsyst. Technol., 16,657-668.   DOI
16 Challa, V.R., Prasad, M.G. and Fisher, F.T. (2011), "Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications", Smart Mater. Struct., 20(2), 025004.   DOI
17 Chen, X.R., Yang, T.Q., Wang, W. and Yao, X. (2012), "Vibration energy harvesting with a clamped piezoelectric circular diaphragm", Ceram. Int., 38, 271-S274.   DOI
18 Dai, H.L., Abdelkefi, A. and Wang, L. (2014a), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam, 77(3), 967-981.   DOI
19 Dai, H.L., Abdelkefi, A. and Wang, L. (2014b), "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations", J. Intel. Mat. Syst. Str., 1-14.
20 Dosch, J.J., Inman, D.J. and Garcia, E. (1992), "A self-sensing piezoelectric actuator for collocated control", J. Intel. Mat. Syst. Str., 3, 166-185.   DOI
21 Guan, Q.C., Ju, B., Xu, J.W., Liu, Y.B. and Feng, Z.H. (2013), "Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses", J. Intel. Mat. Syst. Str., 24(9), 1059-1066.   DOI
22 Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34(1), 78-84.   DOI   ScienceOn
23 Erturk, A. (2009), Electromechanical modeling of piezoelectric energy harvesters, PhD Dissertation, Virginia Tech, Blacksburg.
24 Ferrari, M., Ferrari, V., Guizzetti, M. and Marioli, D. (2009), "An autonomous battery- less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals", Smart Mater. Struct., 18, 085023.   DOI
25 Kim, N.L., Jeong, S.S., Cheon, S.K. and Park, T.G. (2013), "Generating characteristics of hollow-plate-type piezoelectric energy harvester", J. Korean Phys. Soc., 63, 2310-2313.   DOI
26 Levron, Y., Shmilovitz, D. and Martinez-Salamero, L. (2011), "A power management strategy for minimization of energy storage reservoirs in wireless systems with energy harvesting", IEEE T. Circuits Syst., 58(3), 633-643.   DOI
27 Li, W.G., He, S. and Yu, S. (2010), "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass", IEEE T. Ind. Electron., 57(3), 868-876.   DOI
28 Liao, Y. and Sodano, H.A. (2012), "Optimal placement of piezoelectric material on a cantilever beam for maximum piezoelectric damping and power harvesting efficiency", Smart Mater. Struct., 21(10), 105014.   DOI