• Title/Summary/Keyword: Euler Method

Search Result 817, Processing Time 0.024 seconds

Responses and Modal Analyses of Micro Double Cantilever Beams Interacted by Elctrostatic Forces (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.199-205
    • /
    • 2005
  • The governing equations of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for applied voltages. In particular, it is investigated how the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics. This study can help to design MEMS structures and to predict the performances with respect to manufacturing tolerances.

A Numerical Study of Radiation Effect from Ducted Fans with Liners (라이너가 있는 덕트의 소음방사 특성에 관한 수치적 연구)

  • 임창우;정철웅;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1010-1015
    • /
    • 2002
  • Over the last few decades, noise has played a major role in the development of aircraft engines. The dominant noise is generated by the wake interactions of fan and downstream stator. Engine inlet and exhaust ducts are being fitted with liner materials that aid in damping fan related noise. In this paper, the radiation of duct internal noise from duct open ends with liners is studies via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP scheme. The far field sound pressure levels are computed by the Kirchhoff integration method. Through comparison of sound directivity from bell-mouth duct with and without liners, it is shown that radiation from engine inlet is affected by liner effects or a soft wall boundary condition.

  • PDF

강소성 유한요소법에 의한 비정상상태 금속 성형 해석에서 형상갱신기법에 관한 연구

  • Choe, Yeong;Yeo, Hong-Tae;Heo, Gwan-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.58-58
    • /
    • 2004
  • 현재 금속 성형공정에 대한 해석법으로 강소성 유한요소법이 널리 이용되고 있다. 강소성 유한요소법에서는 주어진 시간에서 속도장을 얻고 가공물 형상을 시간증분 만큼 갱신하는 과정을 반복하여 비정상상태 금속성형공정의 해석한다. 일반적인 강소성 유한요소법은 형상갱신(Geometry update) 과정에서 오일러법(Euler method)을 이용한다. 오일러법에서는 시간증분의 크기가 해의 정밀도에 중요한 인자이다. 충분히 정밀한 해를 얻기 위해, 작은 시간증분을 이용하여 비정상상태 금속성형공정을 해석함으로써 해석시간이 많이 걸리는 단점이 있으며 형상갱신에 따른 가공물 체적손실(Volume loss)이 발생한다.(중략)

  • PDF

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정의 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Ahn, Tae-Su;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF

Stability of Cantilever-Type Columns under Nonconservative Load (비보존력이 작용하는 캔틸레버형 기둥의 안정성)

  • 오상진;이병구;최규문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.244-251
    • /
    • 2002
  • The purpose of this paper is to investigate the stability of tapered columns with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The column model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered columns subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. After having verified the results of the present study, the frequency and critical divergence/flutter load are presented as functions of various nondimensional system parameters.

  • PDF

Dynamic Analysis of Micro Cantilever Beams Undertaking Electrostatic Forces (정전기력을 받는 마이크로 외팔보의 동적 해석)

  • Jung Kang-Sik;Moon Seung-Jae;Yoo Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.846-851
    • /
    • 2004
  • Static and dynamic responses of micro cantilever beam structures undertaking electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as resonant frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the applied voltage influences the deflection and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack (크랙을 가진 유체유동 파이프의 동특성 해석)

  • 유진석;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF