• Title/Summary/Keyword: Euler 해석

Search Result 394, Processing Time 0.077 seconds

Aero-Structure MDO Design of Supersonic Fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 공력-구조 다학제간 설계)

  • Kim, Yu-Shin;Kim, Ji-Han;Jeon, Yong-Hee;Bang, Je-Sung;Lee, Dong-Ho;Kim, Yong-Hyup;Park, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.588-594
    • /
    • 2001
  • 본 연구를 통해 초음속 전투기 날개의 공력-구조를 동시에 고려한 다학제간 설계를 수행하였다. 공력해석을 위해 사용된 3 차원 Euler Code는 수렴 속도를 개선하기 위해 Multigrid를 적용하였으며, 3차의 transfinite interpolation을 사용하여 O-H type의 공력해석 격자계를 생성하였다. 구조 분야는 절점당 54개의 자유도를 가지는 9 절점 쉘 혼합 유한요소(9-node shell mixed finite element)를 사용하여 해석을 수행하였다. 설계변수는 공력쪽으로 날개의 평면형상에 관련된 변수 3개, 구조쪽은 날개 윗면과 아래면의 표피두께에 관련된 4개의 설계변수 사용하였으며, D-optimality 조건을 만족시키는 실험점들에 대해 공력해석과 구조해석이 연동된 정적 공탄성 해석을 수행한 후, 반응면 기법을 이용하여 목적함수와 제약조건에 대한 반응면을 구성하였다. 단일점 설계를 수행한 후 이를 바탕으로 3개의 설계점을 동시에 고려한 다점 설계를 수행하였으며, 공력만을 고려한 설계 결과와 공력-구조를 동시에 고려한 다학제간 설계결과의 비교를 통해 다학제간 설계의 타당성과 우수성을 입증하였다.

  • PDF

A Comparative Study on Eigen-Wear Analysis and Numerical Analysis using Algorithm for Adaptive Meshing (마모해석을 위한 고유치해석과 Adaptive Meshing 알고리듬을 이용한 수치해석 비교)

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • Herein, we present a numerical investigation of wear analysis of sliding systems with a constant speed subjected to Archard's wear law. For this investigation, we compared two methods: eigen-wear analysis and adaptive meshing technique. The eigen-wear analysis is advantageous to predict the evolution of contact pressure due to wear using the initial contact pressure and contact stiffness. The adaptive meshing technique in finite element analysis is employed to obtain transient wear behavior, which needs significant computational resources. From the eigen-wear analysis, we can determine the appropriate element size required for finite element analysis and the time increment required for wear evolution by a dimensionless variable above a certain value. Since the prediction of wear depends on the maximum contact pressure, the finite element model should have a reasonable representation of the maximum contact pressure. The maximum contact pressure and wear amount according to this dimensionless variable shows that the number of fine meshes in the contact area contributes more to the accuracy of the wear analysis, and the time increment is less sensitive when the number of contact nodes is significantly larger. The results derived from a two-dimensional wear model can be applied to a three-dimensional wear model.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF

Aeromagnetic Characteristics of the Samryangjin Caldera Area (삼량진 칼데라 지역의 항공자력특성 연구)

  • Koo Sung-Bon;Lee Tai-Sup;Park Yeong-Sue
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.101-109
    • /
    • 1998
  • Using airborne magnetic data, magnetic characteristics were studied at the Samryangjin caldera area developed in the volcanics of the Yuchon sub-basin, the south eastern part of the Gyeongsang basin. Residual magnetics, reduction to the pole, horizontal derivative, and vertical derivative maps are prepared. Using these maps, the magnetic lithofaces are zoned and the geological structures such as caldera and faults were qualitatively interpreted. In addition, the two quantitative interpretations were performed. Firstly, the forward modelling were done to the 14.5 line km crossing the caldera area to the northeast-southwest direction. Applying the 3-D Euler deconvolution method to the whole study area, the depth extent and the characteristics of the magnetic anomalous bodies were studied. According to the results, the magnetic lithofaces of the area are zoned by 4 units. In general, these are well matched with the geological distributions. But the biotite granites intruded in the northern boundary of the Samryangjin caldera show the high magnetic intensity, while the biotite granites of the other areas show the low magnetic intensity and the different magnetic lithofaces. Thus, we interpreted that the biotite granites are closely related with the volcanic activity of the Samryngjin caldera, and are intruded in the fracture zones developed along the caldera rim. The Samryangjin caldera and fault structures of the area can be easily recognized by the distinct magnetic structures from the various magnetic anomaly maps. Also the topographic characteristics well reflect these structures. The results of the forward modelling show that the magnetic basement depth of the Gyeongsang sedimentary basin is on the average about 6 km and in maximum 10 km. And the depth becomes shallower toward the caldera boundary due to the shallow intrusion of the volcanics. The results of the 3-D Euler method also show the caldera and fault structures. And the relatively shallow magnetic anomalous bodies which are related with the volcanics are generally developed to the east-west and northeast directions, while the deep magnetic anomalous bodies to the northwest direction.

  • PDF

Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass (집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

A Study on Didactic Transposition Method and Students' Understanding for Graph's Trail (그래프의 경로에 대한 교수학적 변환 방식과 학생들의 이해 분석)

  • Shin, Bo-Mi
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.2
    • /
    • pp.289-301
    • /
    • 2010
  • This study discovered that instructional objectives of graphs which are dealt with in Math I of the revised curriculum are not matched with those of Discrete Mathematics in the 7th Curriculum. Based on the findings, this study analysed didactic transposition method of trail in graph and matrix of Math I and students' understanding about trail. Then this study discovered that though the concept definition of trail in Math I of the revised curriculum, some textbooks and students tend to consider it as the path. The concept definition of trail is significant in systems that deal with Euler Circuits(Euler Closed trail) and Hamilton Cycle. Then it is not easy to find the value of trail in Math I of the revised curriculum.

  • PDF

Exact Solution for Bending Vibration of Rotating Cantilever Beam with Tapered Width Using Transfer Matrix Method (전달행렬법을 이용하여 폭이 테이퍼진 회전하는 외팔보의 정확한 굽힘 진동해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • In this study, a transfer matrix method in which can produce an infinite number of accurate natural frequencies using a single element for the bending vibration of rotating Bernoulli-Euler beam with linearly reduced width, is developed. The roots of the differential equation in the proposed method are calculated using the Frobenius method in the power series solution. To demonstrate the accuracy of the method, the calculated natural frequencies are compared with the results given by using the commercial finite element analysis program(ANSYS), and the comparison results between these two methods show the excellent agreement. Based on the comparison results, a parametric study is performed to investigate the effect of the centrifugal forces on the non-dimensional natural frequencies for rotating beam with the variable width.

Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End (끝단에 스프링과 질량을 가진 단진보의 자유진동해석)

  • Yu, Chun-Seung;Hong, Dong-Pyo;Chung, Tae-Jin;Chung, Kil-To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

Detection of Sub-Breaking Waves around a Blunt Bow (비대선수 주위의 Sub-Breaking Wave 탐지기법)

  • Myung-Soo Shin;Young-Gill Lee;Eun-Chan Kim;Seung-Il Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 1992
  • Waves around a practical hull form and a series 60 model are computed by rectangular variable spacing and staggered flesh systems based on MAC(Marker and Cell) method. As a governing equation, the Euler equation is adopted. The comparison indicates that the computed waves are in good agreement with the measured results and that the MAC method is useful. On the other hand, a critical condition for the appearance of sub-breaking waves derived from the in viscid instability analysis is applied to the calculated flow field around a blunt bow. It is confirmed that the derived condition detects well the appearance of sub-breaking waves.

  • PDF

An Analysis of the Dynamic Response and Vibrational Mode for the Cantilevered Beam (외팔보의 동적응답과 진동모드 분석)

  • Kim, Ye-Hyun;Go, Young-Jun;Kang, Byoung-Yong;Chang, Ho-Gyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • As analysis of the forced dynamic response and vibrational mode for the cantilevered beam is described. Experimental results are compared with the natural frequencies and vibrational modes for the cantilevered beam using the theory of Bernoulli-Euler and finite element method. We have found 1st and 2nd resonance frequency of the cantilevered beam by means of the various external frequencies, $1{\sim}70Hz$, using magnetic transducer. And we have studied the vibrational displacement at obtained resonance frequency of the cantilevered beam. The experimental results for the nodes of cantilevered beam were 0 in 1st mode and 0,0.786 in 2nd mode. close agreement between the theoretically predicted results and experimental result was obtained for the vibrational mode.

  • PDF