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Abstract

Waves around a practical hull form and a series 60 model are computed by rectangular
variable spacing and staggered mesh systems based on MAC(Marker and Cell) method. As
a governing equation, the Euler equation is adopted. The comparison indicates that the com-
puted waves are in good agreement with the measured results and that the MAC method
is useful. On the other hand, a critical condition for the appearance of sub-breaking waves
derived from the inviscid instability analysis is applied to the calculated flow field around
a blunt bow. It is confirmed that the derived condition detects well the appearance of sub-

breaking waves.
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1. Introduction

It is important to verify the flow field around
a blunt bow in the field of ship hydrodynamics.
But, the wave-breaking phenomena and nonline-
arlity on the free-surface around the blunt bow
have not been come to knowledge.

The flow field around a blunt bow was simul-
ated by Miyata et al.[1]. Finite difference method
was adopted on the staggered rectangular grid
system while the marker segments are moved by
Lagrangian technique. The comparison with the
measured results showed that the method was
useful for the determination of better hull form
with smaller wave resistance.

Grosenbaugh et al.[2] investigated the flow
characteristics of the bow waves. There is a critical
flow velocity at which the bow wave-breaking
takes place. At the critical flow velocity, the bow
wave develops a periodic oscillation. This oscillation
appears to be due to the balance between the rates
at which it is existing In quiescent condition.

Mori[3,4] suggested the sub-breaking waves as
a free-surface turbulent flow which was transited
from the laminar to turbulent flow. By the direct
observation of the free-surface and the analysis
of measured data, it was clarified that the sub-
breaking waves was neither overturning nor spilling.

The term sub-breaking is used here for the
steady breakers at an infant stage to distinguish
from plunging or spilling-type breakers. When the
oncoming flow velocity is increased, the steady
breaker suddenly appears at a certain velocity ;
neither plunging nor spilling flows are observed
then. It can be assumed a kind of free-surface
turbulent flow with intensive fluctuations and it
can not be categorized in the plunging or in the
spilling breakers. The flow mechanism must be
comparably different between them.

Sub-breaking waves by a submerged 2-dimens-
ional hydrofoil were studied by Shin[5]. Experim-
ents were carried out in detail to find out a tur-
bulence model. Relating the turbulence terms with

the averaged velocity, 0- and k- equation models
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were introduced. Then by making use of these
models, sub-breaking waves were simulated and
compared with the measured results. The scheme
with turbulence models simulated rather well the
free-surface turbulent flow field with sub-breaking.
In the present paper, previous works are summ-
arized concerning to the finite difference method
applied for the explanation of the waves generated
by a practical hull form and a series 60 models.
Meanwhile, instability analysis of free-surface flow
i1s applied to numerical results to detect the sub-
breaking waves around a blunt bow in the critical
flow velocity region. The qualitative accuracy of
calculated results is examined and the quantative
availability of instability analysis is discussed.

2. Numerical Algorithm

2.1 Computational Procedure

The principal procedure and details of the
TUMMAC-IV method are explained in previous
referénces[l, 6, 7]. Therefore, very brief explana-
tions are described here. The conservative formed
Euler equations and continuity equation for inviscid
and incompressible fluid are represented in finite-
-difference forms. These governing equations are
solved as an initial-value and boundary-value pro-
blems including free-surface condition using time-
-marching procedure and iteration methods.

A Cartesian coordinate system is employed, in
which the x-axis is the centerline on the design
load waterplane of a ship. The ship advances in
the negative x-direction. A grid system by stagg-
ered semi-variable rectangular meshs is used for
the increase of computation accuracy and applic-
ability. The Euler equations are represented by
first order forward differencing in time and first-
-order centered differencing in space except for
the convection terms. The differencing of the
convection terms are described by a hybrid scheme
that is the combination of second-order centered
differencing and donor-cell method. Also, the
continuity equation is represented by second-order
centered differencing in space.
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The momentum equations and continuity equa-
tion give the Poisson equation for the pressure
distribution. The source term of the Poisson equ-
ation is determined from the velocity field at each
time step. Therefore, the momentum equations
and the Poisson equation are the principal equations
to be solved in present computational procedure.
The momentum equations are hyperbolic to be
solved as an initial-value problem and the Poisson
equation is elliptic to be solved as a boundary-value
problem. That is, the former are solved by time-
-marching procedure and the latter is solved by
iteration method at every time step.

The Poisson equation is iteratively solved by
SOR( Successive Over Relaxation) method with the
following equation.

Pt '= Pyt +&(Pijx It — Pik) 1)

Where, the superscripts m and (m+1) denote
iteration number and w is a relaxation factor.
Pijx .41 is temporary pressure at each iteration
step. The iteration is continued until the second
term of Eq.(1) converges within an allowable error.

The term in the parentheses in Eq.(1) is mod-
ified by eliminating P using the momentum equ-
ations. If the divergence D;;¥ is assumed in

each staggered mesh, Eq.(1) is deformed as

@
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The method by Eq.(2) is called the simultaneous
iterative method which is equivalent to the SOR
method. In this method velocity is successively
updated through the iterated calculation of pressure
field at a time step. This procedure is conveniently
used to deal with the boundary condition for an
arbitrary hull configuration.

Although this computational procedure is suitable
to unsteady problems, it is applied to a steady
problem of ship wave-making in this work by
letting an unsteady solution approach to a steady
state. The initial condition is a rested state, and
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the velocities in computational domain are gradually
accelerated for a desired incident velocity at the
inflow boundary. After the steps of acceleration
the computation is continued for an adequate time
steps until a steady state is reached.

2.1 Boundary Conditions

The TUMMAC-IV method is aimed to simulate
flow around a half body of a ship. Therefore, the
computational domain is bounded by six boundaries
including the centerplane, body and free-surface
boundaries.

At inflow boundary the velocities are given as
desired values i. e., in case of a Dirichlet problem.
The computational domain is bounded by a center
plane of a ship, because the flow of a ship is
symmetry. Namely, on the centerplane the cond-
ition of symmetry must be taken into account.
The bottom boundary is usually located so deep
that the fluid motion is very small. Therefore, the
hydrostatic pressure and the velocity condition of
zero gradient are given at bottom boundary. At
the sideward open boundary the velocities and
pressures are set equal to the inner values so that
their gradient in the direction normal to the bou-
ndary is set zero, i. e., in case of a Neumann
problem. Also, at the downstream open boundary,
their gradient along the local flow direction is set
Zero.

The hull surface is made of waterlines and
framelines. The former is approximated by a
succession of straight segments, and vertical var-
iation within each cell is ignored for the latter.
A free-slip body boundary condition is given in
the body boundary cells(the cells included a body
boundary segment). Namely, the velocity normal
to a body surface is zero, and the tangential
velocity does not have normal gradient, finally the
divergence of a body boundary cell is zero. Under
these conditions, the pressure of a body boundary
cell is computed by velocity-pressure simultaneous
iterative method.

On the free-surface, the Lagrangian movement
of marker particles is used for the fulfilment of
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the kinematic condition, and the irregular’ star
technique of Chan and Street{4] is used for the
dynamic condition. Some interpolation and extra-
polation methods of velocities is made for the
determination of the wvelocity components at the
position of a marker particle, i. e., four-point and
nine-point interpolations and zero gradient extrap-
olations are used.

3. Appearing Condition of Sub-Breaking Waves

Although the physical phenomenon corresponding
to the calculated flow field shows sub-breaking
waves, the calculation reaches the steady state
without any trouble. The calculated result without
any turbulence model or equivalent treatment about
sub-breaking waves may be a fake. Thus, it is
impertant to detect the appearance of sub-breaking
from calculated results.

Mori introduce the appearing condition of sub-
breaking waves by inviscid instability analysis,
while reference{4] gives a full explanation. )

As instability analysis for two-dimensional flows
provides a critical condition for their appearance;

U M 3l 1 om
M haS haS n, haS ’0 3

where,
M=KkUs~n.g)n, . 4

s is the stream line coordinate along the free-
surface and % is its metric coefficient, while » is
the normal to the free-surface;n, the direction
cosine of n to z. U is the velocity component of
the basic flow in the s-direction, & the curvature
of the free-surface and g the gravity acceleration.
Limiting ocurselves to a narrow proximity to the
- 2

wave crest, we assume n,=1, =
X

2
haS
(3) can be reduced approximately into

; then Eq.

dw, o, HeH, ¥4y

V a2 M

W o (g ©
where

M=kU*~g

(6)

The negative gradient of M{U with respect to
x means the flow can be unstable and sub-brea-
king can be appear(note here M is negative), while
positive gradient means its stability.

Although the flow around the blunt bow is not
two-dimensional, the three-dimensionality may not

U,

Fig. 1 Coordinate system

Fig. 2 Perspective views of computed waves
(Series 60 models, Fn=0.2, from above
Cb= 0.6, 0.8, wave height is three times
magnified)
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Table 1 Computationai condition
Series 60 Practical
Cb=0.6 Ch=(.8 Hull Form
Domnain of
Computation(mr}
Length 1.60 1.8 480
Breadth £.385 0.60 1.58
Depth 0.47 0.43 0.86
Cell Size(m)
DX 0.02 0.03 0.07
DY 0.007 0.015 0.04
DZMin.) 0.005 0.01 0.019
Number of Used Cell 154,000 60,000 39,000
(.0064
Time Increment{sec) 0.0040 0.0027 007
Ti 3
ime Steps} for %0 00 30
Acceleration
500
T ime St
otal Time Step 758 1000 <00
Froude Number F, 0.2 0.2 g:i
3
Length of Ship
i 5 1341
Modeim) 25 2 714

be so strong that we can expect Eq.5) is applic-
able without any significant errors.

4. Discussions

Ship hulls used in this study are series 60 models
and arbitrary choosen practical hull form. That
is a crude oil tanker that values of block coeffic-
ient and length by breadth are 0.804 and 5.48,
respectively.

Fig. 1 shows the coordinate system and comp-
utational conditions are shown at Table 1 in detail.
The number of grid points are 154,000 for series
60 models of Ch=0.6, 60,000 for Cb=0.8 and 39
,000 for practical hull form.

Perspective views of computed waves which is
magnified three times are shown at Fig. 2. The
difference of wave configuration affected by block
coefficient is noticable.

Fig. 3 shows contour maps of computed waves.
Wave height around bow by series 60 model of
Cb= 0.8 is higher than that of Cb==0(.6.

The appearing condition of sub-breaking waves

Ada g, olgy, Aed, Fed

is applied to calculated results which is shown at
Fig. 4. The gradient of plotted M/U shows insig-
nificant negative gradient with respect to x axis.
It means the weak sub-breaking waves can be

Fig. 5 Perspective views of computed waves
{Practical Huli, from above : Fn=0.15, 0.17,
wave height is three times magnified)
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Fig. 6 Contour maps of computed waves (Practical
Hufl, from above : Fn==0.15, 0.17)
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appear at this Froude number.

Fig. 5 shows the perspective view of calculated
waves around a practical hull form while photog-
raphs of running ship model are shown at Fig.
7. The tendency of wave configuration seems good
in agreement. Sub-breaking waves are physically
shown around a bow but calculated results don’t
show this phenomena. Although calculated result
shows smooth free-surface[Fig. 6] and the steady
state is reached without any trouble, they are
questionable. Therefore, it is necessary to adopt
the numerical schemes for the sub-breaking waves
or equivalent treatment.

Fig. 8 shows the M/U distribution applied to
the calculated flow around a practical hull. The
abrupt negative gradient with respect to x is
shown which means the sub-breaking waves can
be appear. As a result, this critical condition det-
ects the appearance of sub-breaking waves.

Fig. 7 Photographs of running ship model
(Practical Hull, from above ; Fn=0.15, 0.17)
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5. Conclusion

The flows around a blunt bow are numerically
simulated by using MAC method and inviscid
instability analysis is applied to the calculated
results. Findings through the present study are
summarized as follows :

1) The marker particles moved by Lagrangian
technique simulate well the free-surface flow
around a blunt bow with the appropriate body
boundary condition.

2) By applying the appearing condition of the
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sub-breaking waves derived from the instability
analysis to the calculated results, it is confirmed
that the condition detects the appearance of sub-
-breaking waves.

However, further efforts must be devoted for
the simulation of sub-breaking waves, with the
available turbulence model. It is important to clarify
the mechanism of sub-breaking waves on the
free-surface. The main frame of this work was
done at University of Tokyo and Hiroshima Uni-
versity. All the computations were executed by
IBM PC-386 with WEITEK coprocessor at Korea
Research Institute of Ships and Ocean Engineering.

Reference

[1] Nishimura, S., Miyata, H., and Kajitani, H.,
“Finite-Difference Simulation of Ship Waves
by the TUMMAC-IV Method and Its Applic-
ation of Hull-Form Design”, Journal of Society
of Naval Architects of Japan, Vol.157, pp.1—4,
1985.
Grosenbaugh, M.A. and Yeung, W., “Flow
Structure Near the Bow of a Two-Dimensional
Body”, Journal of Ship Research, Vol33, pp.
269—283, 1989.
[3] Mori, K., “Critical Condition for Their Appea-
rance of Steady Breakers on 2-Dimensional
Wave Generated by Submerged Foil”, Nonlinear

2

Water Waves, Spinger-Verlag, pp.145—150, 1987.

NP5, oG, B, P

[4) Mori, K. and Shin, M.-S., “Sub-breaking Wave
:Its Characteristics, Appearing Conditions and
Numerical Simulation”, Proceedings of 17th
Symposium on Naval Hydrodynamics, 1988.

[5] Shin, M.-S. and Mori, K., “On Turbulent
Characteristics and Numerical Simulation of
2-Dimensional Sub-Breaking Waves”, Journal
of the Society of Naval Architects of Japan, Vol.
165, pp.1—-8, 1989.

[6] Lee, Y.-G., Miyata, H. and Kajitani, H., “Some
Applications of the TUMMAC Method to 3D
Water-wave Problems”, Journal of Society of
Naval  Architects of Korea, Vol.25, No.4, pp.
13—-27, 1988."

[7] Cho, K.J., Lee, K.-H. and Lee, Y.-G., “A
Numerical Simulation of Ship Waves by using
Finite Difference Method”, Journal of Society
of Naval Architects of Korea, Vol.28, No.2, pp.
77—-94, 1991.

[8] Shin, M.-S,, Lee, Y.-G. and Kang, K.-J.,

““Numerical Simulation of the Free-Surface Flow

around a Floating Body”, Proceedings of 6th

International Workshop on Water Waves and

Floating Bodies, 1991.

Chan, RK.C. and Street, R.L., “A Computer

Study of Finite-Amplitude Water Waves”,

Journal of Computational Physics, 6, pp.68—94,

1970.

9

Transactions of SNAK, Vol. 29, No. 3, August 1992



