• Title/Summary/Keyword: Euler

Search Result 1,666, Processing Time 0.021 seconds

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Deterministic Nonlinear Control of Two-Link Flexible Arm (2관절 유연한 로봇 팔에 대한 비선형 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.236-242
    • /
    • 2009
  • When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}$-2C is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed. Lyapunov stability theory is applied to achieve a stable deterministic nonlinear controller for the regulation of joint angle.

  • PDF

NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATION CORRESPONDING TO CONTINUOUS DISTRIBUTIONS

  • Amini, Mohammad;Soheili, Ali Reza;Allahdadi, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.709-720
    • /
    • 2011
  • We obtain special type of differential equations which their solution are random variable with known continuous density function. Stochastic differential equations (SDE) of continuous distributions are determined by the Fokker-Planck theorem. We approximate solution of differential equation with numerical methods such as: the Euler-Maruyama and ten stages explicit Runge-Kutta method, and analysis error prediction statistically. Numerical results, show the performance of the Rung-Kutta method with respect to the Euler-Maruyama. The exponential two parameters, exponential, normal, uniform, beta, gamma and Parreto distributions are considered in this paper.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.

IDEAL CELL-DECOMPOSITIONS FOR A HYPERBOLIC SURFACE AND EULER CHARACTERISTIC

  • Sozen, Yasar
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.965-976
    • /
    • 2008
  • In this article, we constructively prove that on a surface S with genus g$\geq$2, there exit maximal geodesic laminations with 7g-7,...,9g-9 leaves. Thus, S can have ideal cell-decompositions (i.e., S can be (ideally) triangulated by maximal geodesic laminations) with 7g-7,...,9g-9 (ideal) 1-cells. Once there is a triangulation for a compact surface, the Euler characteristic for the surface can be calculated as the alternating sum F-E+V, where F, E, and V denote the number of faces, edges, and vertices, respectively. We also prove that the same formula holds for the ideal cell decompositions.

AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • Odibat, Zaid M.;Momani, Shaher
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.15-27
    • /
    • 2008
  • We present and discuss an algorithm for the numerical solution of initial value problems of the form $D_*^\alpha$y(t) = f(t, y(t)), y(0) = y0, where $D_*^\alpha$y is the derivative of y of order $\alpha$ in the sense of Caputo and 0<${\alpha}{\leq}1$. The algorithm is based on the fractional Euler's method which can be seen as a generalization of the classical Euler's method. Numerical examples are given and the results show that the present algorithm is very effective and convenient.

  • PDF

A Study of Parallel Implementations of the Chimera Method using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 Chimera 기법의 병렬처리에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.S
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.52-62
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consists of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstrate the effectiveness and parallel performance of this procedure.

  • PDF

Numerical Study on the Shock Wave Focusing of Elliptic Reflectors (타원형 반사면에 의한 충격파 초점 변화에 관한 수치적 연구)

  • Ko C. C.;Shim E. B.;Sah J. Y.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 1999
  • In this study, the shock wave focusing of an elliptic reflector is numerically simulated by solving the Euler equations. The numerical method is the second order upwind TVD scheme with a finite volume discretization. For the verification of the present method, we simulate the moving shock wave passing through a two-dimensional corner. The computed isopycnics are compared with the earlier experiment. Numerical results of the elliptic reflectors show that the density and pressure at the focusing point increase linearly as the aspect ratio of the reflector becomes deep. On the other hand, the gas dynamic focal length decreased with the increase of the reflector aspect ratio.

  • PDF

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.