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IDEAL CELL-DECOMPOSITIONS FOR A HYPERBOLIC
SURFACE AND EULER CHARACTERISTIC

YASAR SOZEN

ABSTRACT. In this article, we constructively prove that on a surface S
with genus g > 2, there exit maximal geodesic laminations with 7g —
7,...,99 — 9 leaves. Thus, S can have ideal cell-decompositions (i.e.,
S can be (ideally) triangulated by maximal geodesic laminations) with
79~ 7,...,99 — 9 (ideal) 1-cells.

Once there is a triangulation for a compact surface, the Euler charac-
teristic for the surface can be calculated as the alternating sum F —-E+V,
where F, F, and V denote the number of faces, edges, and vertices, re-
spectively. We also prove that the same formula holds for the ideal cell-
decompositions.

Introduction

Let S be a compact Riemann surface with genus at least 2. By the Uni-
formization Theorem, the only interesting Riemannian structure is hyperbolic
metrics; that is, Riemannian metrics with constant Gaussian curvature —1.
The upper-half plane with the hyperbolic metric can be considered as the uni-
versal covering of such surfaces. The geodesics in this hyperbolic plane model
are either vertical lines perpendicular to the z-axis or the semicircles in the
upper half-plane with centers on the z-axis [1].

Geodesic laminations are generalizations of deformation classes of simple
closed curves on S. More precisely, a geodesic lamination A on the surface S
is by definition a closed subset of S which can be decomposed into family of
disjoint simple geodesics, possibly infinite, called its leaves [2, 4, 5, 6].

Geodesic laminations are fundamental tools in low-dimensional topology and
geometry. An important property of geodesic laminations is that they are in
fact topological object, and independent of the hyperbolic metrics which we
put on the surface. In other words, for any two hyperbolic metrics m;, ms in
the same isotopy class, the set of m;-geodesic laminations on S can naturally
be identified with that of mo-geodesic laminations on S [2].
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A geodesic lamination is mazimal if it is maximal with respect to inclusion;
this is equivalent to the property that the complement S — )\ is union of finitely
many triangles with vertices at infinity [2, 5]. For example, Figure 1d and
Figure 1f are maximal geodesic laminations with 7 and 9 leaves for the surface
S of genus 2.

The motivation for this study is if genus 2 surface S can have maximal geo-
desic lamination with 8 leaves. Actually, for genus 2, one can obtain maximal
geodesic laminations with only 7, 8, and 9 leaves. Moreover, we realize the
simple relation between the Euler characteristic of the surface S and the ideal
cell-decompositions (or ideal-triangulation) of S obtained by these maximal
geodesic laminations. By an ideal cell-decomposition of S, we mean a trian-
gulation of the surface obtained from a maximal geodesic lamination, where
the (ideal) vertices are oo’s and the edges are the closed leaves and the infi-
nite leaves of the lamination spiralling toward these oo’s , and the faces of the
finitely many ideal triangles forming S — A. For example, in Figure 1f, there are
3 zero-cells, 9 one-cells, i.e., leaves, three of which are closed, and 4 two-cells,
i.e., ideal triangles.

We, furthermore, prove that the same type relations hold for genus g > 3.

This paper explains the above discussion. The main result of this paper is:

Theorem 0.0.1. Let S be a compact hyperbolic surface of genus g without
boundary. Then,

(1) There are mazimal geodesic laminations on S with 79 —7,...,99 — 9
leaves. Thus, S has ideal-triangulations with Tg —7,...,99 — 9 edges.
(2) Euler characteristic formula holds for the ideal-triangulations, too.

O

We will constructively present the proof of the main result Theorem 0.0.1.

The paper consists of two parts. In §1, we will provide the preliminary
definitions and results. The proof of Theorem 0.0.1 will be in §2.

We are grateful to the all referees for their comments and critical reading.

1. Ideal triangulation of a compact surface

In this section, S will denote a compact surface of genus at least 2. By the
Uniformization Theorem, the upper-half plane (or Poincare disk) with the hy-
perbolic metric is the universal covering of such surfaces. Recall that geodesics
(or hyperbolic lines) in the hyperbolic plane are either the vertical rays per-
pendicular to the z-axis or the semi-circles in the upper-half plane that are
perpendicular to z-axis [1].

A geodesic lamination is a closed subset of S which can be decomposed as
a union of disjoint complete geodesics which have no self-intersection points.
We refer the reader [2], [4], [5], [6] for more information about the geodesic
laminations on surfaces. Such a notion is actually a topological object, in-
dependent of the metric, in the sense that there is a natural identification
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FiGURE 1. Geodesic Laminations on genus 2 surface with 1,
2, and 3 leaves. Maximal geodesic laminations with 7, 8, and
9 leaves.

between m—geodesic laminations and m'-geodesic laminations for any two neg-
atively curved metrics m and m' [2]. For example, a geodesic lamination can
consist of three disjoint simple closed geodesics (see Figure 1¢) on a Riemann
surface S. However, a typical geodesic lamination may have uncountably many
leaves, for instance a Cantor set of leaves [7].

A geodesic lamination is mazimal if it is maximal for inclusion among all
geodesic laminations, which is equivalent to the property that the complement
S — X consists of finitely many infinite triangles. A fundamental example of
a maximal geodesic lamination is obtained as follows. Start with a family A;
of disjoint simple closed geodesics decomposing S into pairs of pants. Each
pair of pants can be divided into two infinite triangles by two infinite geodesics
spiralling around some boundary components. The union of A; and of these
spiralling geodesics forms a maximal geodesic lamination A (see Figure 1f).

An ideal triangulation of S is a triangulation of the surface obtained from a
maximal geodesic lamination, where the (ideal) vertices are oo’s and the edges
are the closed leaves and the infinite leaves of the lamination spiralling toward
these oo's and the faces are the finitely many ideal triangles forming S — A.

For example, in Figure 1f, we have an ideal triangulation of the surface
obtained from so-called a pant-decomposition of the surface. The edges of the
triangulation are the co’s where the leaves of the lamination spiral towards.
The (ideal-)vertices of the triangulation are the leaves of the lamination and
the faces are the (finitely many) ideal triangles forming S — A. The number of
vertices is V = 3. There are 9 leaves, 3 of which are closed. Thus, the number
of edges is E = 9. If we cut along the closed leaves, we will obtain 2 so-called
pair-of-pants. There are 2 ideal triangles in each pair-of-pants, one in the front
and one on the back (see Figure 2). Hence the number of faces in Figure 1f will
be F' = 2x 2 = 4 x 1. By the Gauss-Bonnet Theorem, the total surface area of a
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compact surface of genus g without boundary is —2mx(S), where x(S5) = 2-2¢
is the Euler characteristic of S. Since the area of an ideal triangle is 7 [1], the
number of faces in an ideal triangulation is actually fixed F = 4(g — 1) [5].
Thus V — E + F' is —2 or the Euler characteristic x(S) = 2 — 2g of S, where
g = 2 is the genus.

To clarify the subject, we shall give another example. Consider, for instance,
Figure 1d, there is 1 vertex, where the leaves are spiralling towards each sides.
There is 1 closed leaf and 3 + 3 = 6 infinite leaves spiralling towards the closed
leave from both sides. The number of edges is 3+ 1+ 3 = 7. If we cut the
surface along the closed leaf, we have 2 punctured torus. On each of these
punctured torus Figure 4, the infinite leaves of the maximal lamination we
started with will give us 2 ideal triangles, one in the front and one in the back
of the punctured torus Figure 4, Figure 2. Thus, the number of faces in Figure
ldisagain2x2 =4x1. Asabove, V-E+F =1-7+4 = -2 or x(S) =2-2g.

As third example, consider the Figure le, this is a maximal geodesic lam-
ination with 8 leaves. There are 2 closed leaves and 3 + 3 infinite leaves spi-
ralling towards these closed leaves. Since V = 2, E = 8, and F = 4, thus
V-E+F=-2o0rx(S5)=2-2g

In all these three examples, the number of two-cells is FF = 4(g — 1). The
number of zero-cells V = 1,2, and 3, respectively. Since for a genus g surface,
3(g — 1) is the maximum number of separating simple closed curves [1], we
can not have more that 3 zero-cell in an ideal triangulation on the genus 2
surface. Therefore, the number of one-cells in an ideal triangulation on the
genus 2 surface can be at least 7 = 7(g — 1) and at most 9 = 9(¢g — 1), i.e,
7(g —1),...,9(g — 1). Thus, there are 3 ideal cell-decompositions for genus 2
surfaces.

2. Proof of the main result

Let S be a compact surface with genus at least 2 and without boundary. It is
well-known that such surfaces (see Figure 3) can be constructed from so-called
pair-of-pants, i.e., disk with two small open disks removed (Figure 2a).

a b

FIGURE 2. Pair-of-Pants and the only maximal geodesic lam-
ination on Pair-of-Pants.

To prove to Theorem 0.0.1, we will use the following.
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Pant-decomposition of Compact surfaces with boundary
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FIGURE 3. Pants Decomposition of Surfaces

Lemma 2.0.2. Pair-of pants has only one ideal triangulation and the Euler
characteristic formula holds.

Proof. For a pair-of-pants P, there is only one ideal triangulation Figure 2b.
There are V=3 vertices and E=3+3 edges, 3 of which are closed curves (the
boundary curves) and 3 infinite leaves spiralling towards the boundary curves,
and F=2 ideal triangles, one in the front and one in the back of the pair of
pants. Thus, V — E + F is —1, i.e., the Euler characteristic x(P) of the P. O

We will also use the following lemma in our computations.



970 YASAR SOZEN

Lemma 2.0.3. Once-punctured torus has only two idea-triangulations and Eu-
ler characteristic formula is true for punctured-torus.

Proof. If we glue two of the boundary curves of P, we obtain a once-punctured

torus T'. For T, there are only 2 ideal triangulations. See Figure 4. The first
one has V =1 (ideal)vertex, E = 3 + 1 = 4 edges, one of which is closed, and

F = 2faces. Then, V—-E+F = —1 = x(T). In the second ideal-triangulation,
E = 3+ 2 edges, 2 of which are closed and the 3 infinite edges spiralling
towards the closed leaves. V = 2 and there are F' = 2 ideal triangles in this

(]
ideal-triangulation. Note that V — E + F = —1 = x{(T). 0O

A
A

FIGURE 4. Punctured Torus, Maximal Laminations on Punc-
tured Torus

Now, we will go back to the motivational examples and conclude that The-
orem 0.0.1 is true for genus 2 surface.

Theorem 2.0.4. Theorem 0.0.1 is true for genus 2 compact surface without
boundary.

Proof. Figure 1 shows how one can reconstruct genus 2 surface. In Figure 1
d,e,f, we respectively have V=1 E =34+14+3=7T=7(g—1),F =2+ 2,
andV —E+F=-2=x(8);V=2E=3+14+3+1=8,F=2+2, and
V-E+F=-2=x(5);V=3,E=1+3+143+1=9=9(9g-1),F =2+2,
and V—E+F = -2 = x(S). Here, the number of two-cells is fixed F = 4(g—1).
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The number of zero-cells is V = 1,2, and 3, respectively. We can not have more
than 3 zero-cell in an ideal triangulation on the genus 2 surface since there are
at most 3(g — 1) simple closed separating curves for genus 2 surface [1]. Thus,
the number of one-cells in an ideal triangulation on the genus 2 surface can be
at least 7= 7(g — 1) and at most 9 = 9(g — 1).

This proves Theorem 0.0.1 is true for genus 2. O
P C IO RO
a b c
4 i
o ?’ o o A4 o
(3]

Ficure 5. Pant-decomposition for genus 3

Lemma 2.0.5. Twice-punctured torus has three ideal-triangulations and the
Euler characteristic formula holds.

Proof. There are three ideal triangulations for twice punctured torus (Figure
5f and Figure 3g,h). Consider two pair-of-pants P; and Po (see Figure 5f

and Figure 3g,h). If we glue two boundary curves of P;, P2, we have twice-
o0
punctured torus T. There are three ideal triangulations see Figure 5f. In the

first one, wehave V=4, F =14+3+1+14+34+1=10,and F =242, s0

[e]e]

V—-E+ F =-2= x(T). In the second ideal-triangulation, there are V =3
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FI1GURE 6. Ideal Triangulations for genus 3

(ideal) vertices, E = 1+6+1+4+1 = 9 edges and F' = 242 faces. Thus, V—-E+F
is =2 or x(T'). In the third ideal triangulation, V =2, E =14+6+1 = 8,
F=2+2andV-E+F=-2=x(T). O

Theorem 2.0.6. Theorem 0.0.1 is true for genus 8.

Proof. One can obtain genus 3 surface as follows: 2 twice-punctured tori; 1
twice-punctured torus, 1 pair-of-pants,and 1 once-punctured torus; 2 once-
punctured tori, 2 pair-of-pants; 3 pair-of-pants, 1 once-punctured torus; 4 pair-
of-pants Figure 5a-e. In the ideal triangulation Figure 5j1, we have V = 2, E =
6+24+6=14=7g—-1),F =44+4=8s0oV-E+F=-4=x(S).In
the second ideal-triangulation Figure 5i, V =3, E=6+2+3+1+3=15=
Tg—1)+1,F =4+2+2 = —2x(S),and so V—E+F = —4 = x(S5). The ideal-
triangulation Figure 5h, V =4, F = 3+1+34+24+3+143=16 =7(g — 1) + 2,
and F =242+2+2=8= —2x(S) hence V_E+ F = -4 = x(5). In
the ideal-triangulation Figure 5g, we have V = 5, FE = 1+3+ 143+ 2+
3+1+3=17=7(g—-1)+3,and F =2+2+2+2 =8 = —2x(9),
again V — E 4+ F = —4 = x(5). The ideal-triangulation Figure 5f has V = 6,
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FiGURE 7. Ideal Triangulations for genus 4

E=1+3+1+3+2+3+1+3+1=18="7(g—1)+4=9(g—1) and
F=2+2+2+2=8=-2x(S)soV—E+F = —4=x(S).

O

For the proof of Theorem 0.0.1 for genus 4, consider the Figure 7.

Theorem 2.0.7. Theorem 0.0.1 is true for genus 4.

Proof. The ideal triangulations in Figure 7a have respectively V = 9,8,7; £ =
27,26,25; and F = 12,12,12. Thus, V — E + F respectively is 9 — 27+ 12,8 —
26 + 12,7 — 25 + 12 = —6 or —x(.5). In the ideal triangulations Figure 7b,
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Fi1GURE 8. Pants To 4-Times Punctured Sphere

V =8,7,6; E = 26,25,24; and F = 12,12,12. Hence, V — E + F = x(95).
Since the ideal triangulations in Figure 7c have respectively V = 7,6,5; E =
25,24,23; and F = 12,12,12, V — E+ F = x(S). In Figure 7d, the ideal
triangulations have respectively V = 6,5,4; E = 24,23,22; F = 12,12,12 and
thus V — E+ F = x(95). Ideal triangulations in Figure 7e respectively V = 5,4;
E =23,22; F =12,12 and hence V — E + F = x(S). Finally, in Figure 7f, the
ideal triangulations have respectively V = 5,4,3; £ = 23,22,21; F = 12,12,12
and hence V — E 4+ F = x(5).

This finishes the proof of Theorem 0.0.1 for genus 4. O

We will finish by the proof of Theorem 0.0.1 genus > 2.
Theorem 2.0.8. Theorem 0.0.1 is true for genus > 2.

Proof. We can obtain the result for any genus g > 2 by starting with the max-
imal geodesic lamination corresponding to pant-decomposition of the surface
Figure 3 and then delete the closed curves one at a time till we have g — 1
vertices. So, the number of vertices is at least (g — 1) and at most 3(g — 1).
3(g — 1) is the number of closed curves in the pant-decomposition of a genus g
surface [1]. The number of ideal triangles in a maximal geodesic lamination is



IDEAL CELL-DECOMPOSITIONS

f?;\\\_ﬂemeﬁ_ i

P

;‘!/’;)HL‘ \7
i N
Four Times Punctured Sphere

F1GURE 9. Maximal Laminations For Two Pairs of Pants

e,

f<t

Y

N7

et

=

Glus

=6

W

ideal Triangulatons For Four Times Punctured Sphere

ST~ P
‘;jf/j Cf\\gf,/j

Twica Punctured Torus

o]
® ©

Ideal Friangulations For Twice Punctured Torus

FicURE 10. MaximalLaminations for Twice-Punctured Torus

fixed 4(g — 1) [5]. Therefore, since V- E+F =2(1-g),V-E =6(1-g)
and hence E can be 7(g — 1),...,9(g — 1).

This finishes the proof of Theorem 0.0.1 for genus g.
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