• Title/Summary/Keyword: Euler's Explicit Method

Search Result 16, Processing Time 0.019 seconds

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

COMPARATIVE STUDY ON FLUX FUNCTIONS AND LIMITERS FOR THE EULER EQUATIONS (Euler 방정식의 유량함수(Flux Function)와 제한자(Limiter) 특성 비교 연구)

  • Chae, E.J.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • A comparative study on flux functions for the 2-dimensional Euler equations has been conducted. Explicit 4-stage Runge-Kutta method is used to integrate the equations. Flux functions used in the study are Steger-Warming's, van Leer's, Godunov's, Osher's(physical order and natural order), Roe's, HLLE, AUSM, AUSM+, AUSMPW+ and M-AUSMPW+. The performance of MUSCL limiters and MLP limiters in conjunction with flux functions are compared extensively for steady and unsteady problems.

STUDY ON FLUX FUNCTIONS FOR THE EULER EQUATIONS (Euler 방정식의 Flux Function 특성 비교 연구)

  • Chae, E.J.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.36-40
    • /
    • 2006
  • A comparative study on flux functions for the 2-dimensional Euler equations has been conducted. Explicit 4-stage Runge-Kutta method is used to integrate the equations. Flux functions used in the study are Steger-Warming's, van Leer's. Godunov's, Osher's(physical order and natural order), Roe's, HILE, AUSM, AUSM+ and AUSMPW+. The performance of MUSCL limiters and MLP limiters in conjunction with flux functions are compared extensively for steady and unsteady problems.

  • PDF

SOME RELATIONS ON PARAMETRIC LINEAR EULER SUMS

  • Weiguo Lu;Ce Xu;Jianing Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.985-1001
    • /
    • 2023
  • Recently, Alzer and Choi [2] introduced and studied a set of the four linear Euler sums with parameters. These sums are parametric extensions of Flajolet and Salvy's four kinds of linear Euler sums [9]. In this paper, by using the method of residue computations, we will establish two explicit combined formulas involving two parametric linear Euler sums S++p,q (a, b) and S+-p,q (a, b) defined by Alzer and Choi, which can be expressed in terms of a linear combinations of products of trigonometric functions, digamma functions and Hurwitz zeta functions.

RELIABILITY OF NUMERICAL SOLUTIONS OF THE G-EULER PROCESS

  • YU, DONG WON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.49-66
    • /
    • 2022
  • The G-Euler process has been proposed to overcome the difficulties of the calculation of the exponential function of the Jacobian. It is an explicit method that uses the exponential function of the scalar skew-symmetric matrix. We define the moving shapes of true solutions and the moving shapes of numerical solutions. It is discussed whether the moving shape of the numerical solution matches the moving shape of the true solution. The match rates of these two kinds of moving shapes are sequentially calculated by the G-Euler process without using the true solution. It is shown that the closer the minimum match rate is to 100%, the more closely the numerical solutions follow the true solutions to the end. The minimum match rate indicates the reliability of the numerical solution calculated by the G-Euler process. The graphs of the Lorenz system in Perko [1] are different from those drawn by the G-Euler process. By the way, there is no basis for claiming that the Perko's graphs are reliable.

Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle (내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석)

  • Yoon W. S.;Kho H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF

Some Modifications of MacCormark's Methods (MacCormack 방법의 개량에 대한 연구)

  • Ha, Young-Soo;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

  • PDF

SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

  • Hongyuan Rui;Ce Xu;Xiaobin Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.671-697
    • /
    • 2024
  • In this paper, we formally introduce the notion of a general parametric digamma function Ψ(−s; A, a) and we find the Laurent expansion of Ψ(−s; A, a) at the integers and poles. Considering the contour integrations involving Ψ(−s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.

Real Time Textile Animation Using Fuzzy Inference (퍼지추론을 적용한 직물 애니메이션)

  • Hwang, Seon-Min;Song, Bok-Hee;Yun, Han-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.1-8
    • /
    • 2011
  • A fuzzy inference technique for real-time textile animation without integration at textile model based Mass-Spring model is introduced. Until now many techniques have used the Mass-Spring model to describe elastically deformable objects like textile. A textile object is able to represent as a deformable surface composed of spring and masses, the movement of textile surface which is analysed through the numerical integration by the fundamental law of dynamics such as Hooke's law. However, the integration methods have 'instability problems' if the explicit Euler's method is applied or 'large amounts of calculation' if the implicit Euler's method is applied. A simple and fast animation technique for Mass-Spring model of a textile with fuzzy inference is proposed. The stabilized simulation result is obtained the state of each mass-point in real-time for the n of mass-points by a relatively simple calculation.

A Dynamic Characteristics of the Tube Flow with the Variations of the Axially-Positioned Super-Circled Orifice Shape (유동방향의 초원형 오리피스 형상 변화가 관유동에 미치는 동특성 연구)

  • Kim, Youn J.;Lee, Sang-Sub
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 1997
  • Dynamic characteristics of compressible flow fields in super-circled constricted tube have been studied numerically. By applying MacCormack's explicit scheme, time marching method with predictor/corrector step, Euler equation is solved to find characteristics of fluid flow in a constricted tube where a two-dimensional inviscid compressible flow is assumed. The effects of tube diameter and aspect ratios on the pressure variations are discussed extensively. The results of the developed numerical schemes are compared with those of commercial FLUENT code, and show a good agreement.

  • PDF