• 제목/요약/키워드: Euler' Characteristics

검색결과 215건 처리시간 0.04초

비정렬 오일러 코드를 이용한 2자유도계 시스템의 유체유발 진동해석 (Flow-Induced Vibration Analysis of 2-DOF System Using Unstructured Euler Code)

  • 김동현;박영민;이인;권오준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.675-680
    • /
    • 2001
  • In this study, a fluid/structure coupled analysis system using computational fluid dynamics and computational structural dynamics has been developed. The unsteady flow fields are predicted using unstructured Euler code. Coupled time-integration method (CTIM) was applied to computer simulation of the flow-induced vibration phenomena. To investigate the interaction effect of shock motions, 2-DOF airfoil systems have been studied in the subsonic and transonic flow region. Also, aeroelastic analyses for the airfoil with an arbitrary object are performed to show the analysis capability and interference effects for the complex geometries. The present results show the flutter stabilities and characteristics of aeroelastic responses with moving shock effects.

  • PDF

가늘고 긴 소형로켓의 비행특성에 영향을 주는 외력에 기인한 임계하중에 관한 연구 (A study on critical load due to external force influencing on flight characteristics of a small slender body rocket.)

  • 고태식;나선화
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.393-397
    • /
    • 2007
  • 이 연구의 목적은 추력, 항력, 중량 등의 외력들에 기인하여 가늘고 긴 동체의 소형로켓의 비행궤도에 영향을 줄 수 있는 임계하중을 조사하는데 있다. 임계하중은 먼저 Euler 기둥식을 이용하여 구하였고, 검증을 위해 유한 요소법의 수치해석 결과와 비교하였다.

  • PDF

자유회전 테일핀의 회전율 및 Roll-Lock 현상 연구 (A Study on the Roll-Rate of a Canard-Controlled Missile with Freely Spinning Tailfins)

  • 양영록;이진희;김문석;박찬혁;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.126-129
    • /
    • 2008
  • In this study the aerodynamic characteristics of a canard-controlled missile with freely spinning tailfins were investigated by using a CFD code. The aerodynamic coefficients and roll-rate of freely spinning tailfins were calculated by an analysis of 6-DOF and the Euler code. Results were in good agreement with experimental data, and the roll-rates of freely spinning tailfins were also in good agreement with the experimental data for the roll and yaw canard control inputs. This indicates that the CFD Euler code can be applied to predict the canard-controlled missile with freely spinning tailfins.

  • PDF

Influence of Uncertainties for Compressive Buckling of Composite Materials and Its Numerical Simulations

  • Ueda, Tetsuhiko;Takase, Shouhei;Ikeda, Tadashige;Iwahori, Yutaka
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.177-190
    • /
    • 2008
  • As the first step in discussing the reliability of composite structures, a fundamental study was performed to obtain the scattering characteristics of glass-fiber reinforced plastics (GFRP) and woven carbon fiber reinforced plastics (WCFRP) as well as a reference metal. The Euler buckling load was obtained experimentally for each material. The experiments were conducted for specified rectangular specimens with simply supported edges. A new attachment to realize the simply support boundary conditions for composite materials have been prepared before these experiments. The scattering data in the results for GFRP and WCFRP composites were compared with those of a typical metal of aluminum alloy. The experimental data were also compared with numerical simulations including the uncertainties.

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • 제40권5호
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

형식불역의 원리를 통한 고차원 도형의 탐구 (An investigation on the hyper-dimensional figure by the principle of the permanence of equivalent forms)

  • 송상헌
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권4호
    • /
    • pp.495-506
    • /
    • 2003
  • 본 논문에서는 형식불역의 원리를 적용하여 4차원 이상의 고차원 도형 중 특별한 몇 가지 도형의 기하학적 모델을 탐구해 보면서 이것이 기존의 일반적인 수학적 성질과 원리, 법칙에 모순됨이 없는지를 검증해 보았다. 정다면체는 5개뿐이라는 설명 방식에 형식불역의 원리를 적용하면 4차원 정다포체는 6개뿐임을 설명할 수 있다. 그리고 두 가지 정의(기둥형과 뿔형)에 의해 만들어진 볼록한 고차원 도형들은 다면체에서의 오일러 정리를 일반화한 오일러 특성수에 정확히 들어맞는다는 것을 확인할 수 있다. 특히, 뿔형의 경우는 그 도형의 꼭지점, 모서리, 면, 입체 등의 개수들이 파스칼의 삼각형 구조를 이루고 있으며 기둥형의 경우는 임의로 정한 수의 모든 약수들을 하세의 다이어그램을 통해 약수와 배수의 관계로 표현할 수 있다. 이러한 소재들은 영재 교수학습용 자료로도 활용할 수 있을 것이다.

  • PDF

시간종속적 하중을 받는 축하중을 받을 때의 동특성 - 고체점성 고찰 - (Dynamic Characteristics of a Beam Sujected to an Axial Force and a Force of Time Dependent Frequency - Effect of Solid Viscosity -)

  • 정태진;박영조
    • 대한기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.456-462
    • /
    • 1986
  • 본 논문은 Voigt형의 고체점성을 갖는 단순기지보에 외부기진력이 sin(1/2 at$^{2}$+1/3bt$^{3}$)인 꼴로 작용할 때에 축하중 및 각속도의 변화에 따른 동적 처짐 효과를 고찰하였다.