• 제목/요약/키워드: Euclidean Metric

검색결과 91건 처리시간 0.022초

A NON-NEWTONIAN APPROACH IN DIFFERENTIAL GEOMETRY OF CURVES: MULTIPLICATIVE RECTIFYING CURVES

  • Muhittin Evren Aydin;Aykut Has;Beyhan Yilmaz
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.849-866
    • /
    • 2024
  • In this paper, we study the rectifying curves in multiplicative Euclidean space of dimension 3, i.e., those curves for which the position vector always lies in its rectifying plane. Since the definition of rectifying curve is affine and not metric, we are directly able to perform multiplicative differential-geometric concepts to investigate such curves. By several characterizations, we completely classify the multiplicative rectifying curves by means of the multiplicative spherical curves.

A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS

  • Kim, Jongsu
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.647-655
    • /
    • 2013
  • We obtain $C^{\infty}$-continuous paths of explicit Riemannian metrics $g_t$, $0{\leq}t$ < ${\varepsilon}$, whose scalar curvatures $s(g_t)$ decrease, where $g_0$ is a flat metric, i.e. a metric with vanishing curvature. Most of them can exist on tori of dimension ${\geq}3$. Some of them yield scalar curvature decrease on a ball in the Euclidean space.

THE LOWER BOUNDS FOR THE HYPERBOLIC METRIC ON BLOCH REGIONS

  • An, Jong Su
    • 충청수학회지
    • /
    • 제20권3호
    • /
    • pp.203-210
    • /
    • 2007
  • Let X be a hyperbolic region in the complex plane C such that the hyperbolic metrix ${\lambda}_X(w){\mid}dw{\mid}$ exists. Let $R(X)=sup\{{\delta}_X(w):w{\in}X\}$ where ${\delta}_X(w)$ is the euclidean distance from w to ${\partial}X$. Here ${\partial}X$ is the boundary of X. A hyperbolic region X is called a Bloch region if R(X) < ${\infty}$. In this paper, we obtain lower bounds for the hyperbolic metric on Bloch regions in terms of the distance to the boundary.

  • PDF

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

Some Notes on Lp-metric Space of Fuzzy Sets

  • Kim, Yun-Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.242-246
    • /
    • 2010
  • It is well-known that the space $E^n$ of fuzzy numbers(i.e., normal, upper-semicontinuous, compact-supported and convex fuzzy subsets)in the n-dimensional Euclidean space $R^n$ is separable but not complete with respect to the $L_p$-metric. In this paper, we introduce the space $F_p(R^n)$ that is separable and complete with respect to the $L_p$-metric. This will be accomplished by assuming p-th mean bounded condition instead of compact-supported condition and by removing convex condition.

COMPARISON THEOREMS FOR THE VOLUMES OF TUBES ABOUT METRIC BALLS IN CAT(𝜿)-SPACES

  • Lee, Doohann;Kim, Yong-Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.457-467
    • /
    • 2011
  • In this paper, we establish some comparison theorems about volumes of tubes in metric spaces with nonpositive curvature. First we compare the Hausdorff measure of tube about a metric ball contained in an (n-1)-dimensional totally geodesic subspace of an n-dimensional locally compact, geodesically complete Hadamard space with Lebesgue measure of its corresponding tube in Euclidean space ${\mathbb{R}}^n$, and then develop the result to the case of an m-dimensional totally geodesic subspace for 1 < m < n with an additional condition. Also, we estimate the Hausdorff measure of the tube about a shortest curve in a metric space of curvature bounded above and below.

CLASSIFICATIONS OF ROTATION SURFACES IN PSEUDO-EUCLIDEAN SPACE

  • Kim, Young-Ho;Yoon, Dae-Won
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.379-396
    • /
    • 2004
  • In this article, we study rotation surfaces in the 4-dimensional pseudo-Euclidean space E$_2$$^4$. Also, we obtain the complete classification theorems for the flat rotation surfaces with finite type Gauss map, pointwise 1-type Gauss map and an equation in terms of the mean curvature vector. In fact, we characterize the flat rotation surfaces of finite type immersion with the Gauss map and the mean curvature vector field, namely the Gauss map of finite type, pointwise 1-type Gauss map and some algebraic equations in terms of the Gauss map and the mean curvature vector field related to the Laplacian of the surfaces with respect to the induced metric.

THE HARDY TYPE INEQUALITY ON METRIC MEASURE SPACES

  • Du, Feng;Mao, Jing;Wang, Qiaoling;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1359-1380
    • /
    • 2018
  • In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Hardy type inequality with the same exponent n ($n{\geq}3$), then it has exactly the n-dimensional volume growth. Besides, three interesting applications of this fact have also been given. The first one is that we prove that complete noncompact smooth metric measure space with non-negative weighted Ricci curvature on which the Hardy type inequality holds with the best constant are isometric to the Euclidean space with the same dimension. The second one is that we show that if a complete n-dimensional Finsler manifold of nonnegative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then its flag curvature is identically zero. The last one is an interesting rigidity result, that is, we prove that if a complete n-dimensional Berwald space of non-negative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then it is isometric to the Minkowski space of dimension n.