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THE LOWER BOUNDS FOR THE
HYPERBOLIC METRIC ON BLOCH REGIONS

Jong Su An*

Abstract. Let X be a hyperbolic region in the complex plane C such
that the hyperbolic metrix λX(w)|dw| exists. Let R(X) = sup{δX(w) : w ∈
X} where δX(w) is the euclidean distance from w to ∂X. Here ∂X is the
boundary of X. A hyperbolic region X is called a Bloch region if R(X) < ∞.
In this paper, we obtain lower bounds for the hyperbolic metric on Bloch
regions in terms of the distance to the boundary.

1. Introduction

Now we give a brief introduction to the hyperbolic (or Poincaré) metric.

We refer the reader to ([2], [10] and [11]) for further details. The hyperbolic

metric on the unit disk D = {z : |z| < 1} is defined by

λD(z)|dz| = |dz|
1− |z|2 .

A region X in the complex plane C is called hyperbolic if C−X contains at

least two points. By X, we always mean a hyperbolic region in C. If a region

X is hyperbolic then by the uniformization theorem [2, p. 142] there exists

an analytic universal covering projection p of D onto X. If X is simply

connected then p is just a conformal function of D onto X. The collection

of all analytic universal covering projections of D onto X consists of the

function p ◦ T where T ∈ Aut(D), the group of conformal automorphisms

of D. Recall that T ∈ Aut(D) if and only if there exists a ∈ D and θ ∈ R

such that

T (z) = eiθ z − a

1− az
.
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The density λX(z) of the hyperbolic metric λX(z)|dz| is defined by

λX(p(z))|p′(z)| = λD(z)

where p : D → X is any analytic universal covering projection. The density

of the hyperbolic metric is independent of the choice of the analytic universal

covering projection p since |T ′(z)|(1 − |T (z)|2)−1 = (1 − |z|2)−1 for z ∈ D.

The hyperbolic density is positive and real-analytic on X. Because of this

we may select any w in X and assume that p(0) = w then λX(w)|p′(0)| = 1.

It has constant Gaussian curvature -4; this means that

k(w, λX) = −4logλX(w)
λ2

X(w)
= −4,

where 4 is the Laplacian. An important property of the hyperbolic metric

is the principle of hyperbolic metric due to R. Nevanlinna [8, p. 50]. We

shall need this principle in the following form

λX(f(z))|f ′(z)| ≤ λD(z),

where f : D → X is analytic and z is any point in D, and equality holds if

and only if f is an analytic universal covering projection of D onto X. When

we try to obtain a general lower bound of λX , the most important thing is

probably the lower bound of that for the special domain X0 = C−{0, 1}. The

following inequality was proved by Hempel [5] and Jenkins [6] independently

:

λX0(z) ≥ 1
2|z|(|log|z||+ c1)

,

where c1 = 1/2λX0(−1) = Γ(1/4)4/4π2, Γ(x) is the usual Gamma function.

And also Sugawa [11] proved that, for the λX0(z)|dz|, the lower estimates

λ0(z) ≥ c2

|z|3/4|z − 1|1/2

can be obtained. Here c2 =
√

2λX0(−1) = 2
√

2π2/Γ(1/4)4.

Let δX(w) denote the euclidean distance from w to ∂X. Hence ∂X is the

boundary of X. Then δX(w)−1 is called the density of the quasi hyperbolic
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metric. We shall make use of estimates of the hyperbolic metric in terms

of the quasi hyperbolic metric. Let R(X) = sup{δX(w) : w ∈ X}. Roughly

speaking, R(X) is the radius of the largest disk in X. A hyperbolic region

X is called a Bloch region if R(X) < ∞. From the definition of the Bloch

regions it is easy to see that X is a Bloch region if and only if X does not

contain arbitrarily large disk.

Typically, there is no explicit formula for the density λX(w) of the hy-

perbolic metric, so estimates are useful. However, there are few results that

deal explicity with the size of the hyperbolic metric. Let us survey some of

these. Ahlfors ([1], [2]) gave analytic bounds in case X is the trice punc-

tured sphere. Often, one is interested in bounds for λX(w) in terms of the

geometric quantity δX(w). The upper bound λX(w)δX(w) ≤ 1 is a direct

consequence of Schwarz’s lemma [7, p. 45]. On the other hand, for any hy-

perbolic simply connected region X, we have 1/4 ≤ λX(w)δX(w) [7, p. 45].

Blevins [3] obtained a sharp lower bound for simply connected regions that

are bounded by a quasiconformal circle. The upper bound of λX(w)δX(w)

is sharp but the lower bound 1/4 is not.

We are interested in obtaining a lower bound for λX(z) in terms of δX(z)

that is valid even if the boundary of X has isolated points. If X = {z : 0 <

|z − a| < R}, then

λX(z) =
1

2|z − a|[logR− log|z − a|] .

Then δX(z) = |z − a| for 0 < |z − a| ≤ R/2 and so

λX(z) =
1

2δX(z)[logR− logδX(z)]

for z → a. This example also shows explicity that λX(z)δX(z) has no positive

lower bound as z → a. For a general hyperbolic region we consider the

possibility of finding a lower bound of the form

λX(z) ≥ 1
2δX(z)[logb− logδX(z)]

where b is a positive constant. Such a bound is implicit in Ahlfors’ method

for determining a lower bound for the Landau constant [1]. Since bounds
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for the hyperbolic metric are relatively scare, it seems worthwhile to make

explicit these bounds.

In this paper, we will establish lower bounds for the hyperbolic density

λX(w) by various powers of the distance to the boundary ∂X, in this case

when X is a Bloch region.

2. Main theorem

In this Section, we assume that f : D → C is an analytic universal

covering projection.

Lemma 2.1. Let X be a Bloch region. Then for any x ∈ (0, 1),

|f ′(0)| ≤ δX(w)1−x(G2 − δX(w)2x)
xG

,

where w = f(0) and G is a constant.

Proof. For x ∈ (0, 1), we consider the conformal metric ρ(w)|dw| in X

given by

(1) ρ(w)|dw| = xG|dw|
R(w)1−x(G2 −R(w)2x)

.

Here G is a constant and is given by satisfying (1). And also R(w) is the

radius of the largest unramified disk about w in the image of f . Since f is a

universal covering projection, δX(w) is the radius of the largest unramified

disk. It follows that R(w) = δX(w).

We will show that ρ(f(z))|f ′(z)||dz| is an ultrahyperbolic metric on D

for G sufficiently larger. The inequality ρ(f(z)) ≤ λX(f(z)) will then follow

from Ahlfor’s generalization of Schwarz’s Lemma ([1], [2, p. 13]). Since

δX(f(z)) is a continuous function, it is clear that ρ(f(z))|f ′(z)||dz| is a

positive continuous metric on D.

To show that ρ(f(z))|f ′(z)||dz| is an ultrahyperbolic metric on D, we

must exhibit a supporting metric at each point f(z1) of X. This is a metric

ρ1(f(z))|f ′(z)||dz| defined in a neighborhood of f(z1) with constant curva-

ture -4 such that ρ1(f(z)) ≤ ρ(f(z)) for f(z) → f(z1) with equality at f(z1).

Given f(z1) ∈ X, select a ∈ ∂X with |f(z1)− a| = δX(f(z1)). Then

R(f(z)) = δX(f(z)) ≤ |f(z)− a| < R(X)
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for f(z) → f(z1) with equality at f(z1). At z ∈ D, a supporting metric is

given by ρ1(f(z))|f ′(z)||dz| with

ρ1(f(z))|f ′(z)| = xG|f ′(z)|
|f(z)− a|1−x(G2 − |f(z)− a|2x)

.

If the function h(t) = t(1−x)(G2 − t2x) is increasing then the inequality

R(f(z)) = δX(f(z)) ≤ |f(z)− a| < R(X)

for f(z) → f(z1) yields ρ1(f(z)) ≤ ρ(f(z)) for f(z) → f(z1) with equality

at f(z1).

Since the hyperbolic metric ρ(f(z))|f ′(z)||dz| has constant curvature -4,

it is a supporting metric for ρ(f(z))|f ′(z)||dz| at f(z1). In order to have

ρ1(f(z)) ≤ ρ(f(z)), we need the function t(1−x)(G2 − t2x) to be increasing.

This will be the case provided

G2 >
(1 + x)R(X)2x

1− x
.

Hence ρ(f(z))|f ′(z)||dz| is ultrahyperbolic metric for the chosen of G. There-

fore

ρ(f(z))|f ′(z)| ≤ (1− |z|2)−1.

At z = 0 we have the result. ¤ ¤

Theorem 2.2. Let X be a Bloch region. Then for any x ∈ (0, 1),

λX(w) ≥ x
√

(1− x)/(1 + x)
δX(w)1−xR(X)

where f(0) = w ∈ X.

Proof. We will derive our results from Lemma 2.1. Since xG|f ′(0)| ≤
G2δX(w)1−x, we have

λX(w) =
1

|f ′(0)| ≥
x

GδX(w)1−x
,

and the result follows by letting G →
√

(1 + x)/(1− x)R(X)x. ¤ ¤
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Remark. Ahlfors first used his method to establish a lower bound for the

size of unramified disk in the image of analytic functions f : D → C nor-

malized by |f ′(0)| = 1. He showed the estimate
√

3/4 and with basically the

same argument one can prove the bound 1/4 when f so normalized is locally

univalent. These bounds are not sharp. In general it is not true that there

is a positive constant c(X) such that λX(z)δX(z) ≥ c(X). For example, if

D1 = D − {0} then δD1(w) = |w| for 0 < |w| ≤ 1/2 and

λD1(w)δD1(w) =
1

2|w|log(1/|w|) |w| = − 1
2log|w|

for 0 < |w| ≤ 1/2 so that λD1(w)δD1(w) → 0 as w → 0. Beardon and Pom-

merenke [4] and Pommerenke [6] have obtained a necessary and sufficient

condition for the existence of such a positive contant c(X). They introduce

the function

βX(w) = inf
{∣∣∣∣log

∣∣∣∣
w − a

b− a

∣∣∣∣
∣∣∣∣ : a, b ∈ ∂X, |w − a| = δX(w)

}
,

and show that

λX(w)δX(w) ≥ 1
2
√

2(k + βX(w))

with k = 4 + log(3 + 2
√

2).

Here we have a lower bound of λX(w)δX(w) on a Bloch region.

Theorem 2.3. Let X be a Bloch region. Then

λX(w)δX(w) ≥ 1
2[1 + log R(X)− log δX(w)]

,

where w ∈ X.

Proof. By Lemma 2.1 and letting G →
√

(1 + x)/(1− x)R(X)x, we have

1
|f ′(0)| ≥

xG

δX(w)1−x(G2 − δX(w)2x)

≥
√

1 + x

1− x
R(X)x x

δX(w)1−x
(

1+x
1−xR(X)2x − δX(w)2x

) .
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Therfore

δX(w)
|f ′(0)| ≥

√
1 + x

1− x
R(X)x x

δX(w)−x
(

1+x
1−xR(X)2x − δX(w)2x

)

=

√
1 + x

1− x

(
R(X)
δX(w)

)x
x(

1+x
1−x

)(
R(X)
δX(w)

)2x

− 1
.

Now it follows from the L’Hospital rule that

lim
x→0

x(
1+x
1−x

)(
R(X)
δX(w)

)2x

− 1

= lim
x→0

1

2
(1−x)2

(
R(X)
δX(w)

)2x

+ 2
(

1+x
1−x

)(
R(X)
δX(w)

)2x

log
(

R(X)
δX(w)

)

=
1

2[1 + log R(X) − log δX(w)]
.

By letting x → 0, we have the result. ¤ ¤

Remark. For a Bloch region X, λX(w) → ∞ when w → ∞ if and only if

δX(w) → 0 when w →∞.
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