• Title/Summary/Keyword: Euclidean 3-Space

Search Result 167, Processing Time 0.028 seconds

A Characterization of Involutes and Evolutes of a Given Curve in 𝔼n

  • Ozturk, Gunay;Arslan, Kadri;Bulca, Betul
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.117-135
    • /
    • 2018
  • The orthogonal trajectories of the first tangents of the curve are called the involutes of x. The hyperspheres which have higher order contact with a curve x are known osculating hyperspheres of x. The centers of osculating hyperspheres form a curve which is called generalized evolute of the given curve x in n-dimensional Euclidean space ${\mathbb{E}}^n$. In the present study, we give a characterization of involute curves of order k (resp. evolute curves) of the given curve x in n-dimensional Euclidean space ${\mathbb{E}}^n$. Further, we obtain some results on these type of curves in ${\mathbb{E}}^3$ and ${\mathbb{E}}^4$, respectively.

SPACE CURVES SATISFYING $\Delta$H = AH

  • Kim, Dong-Soo;Chung, Hei-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.193-200
    • /
    • 1994
  • Let x : $M^{n}$ .rarw. $E^{m}$ be an isometric immersion of a manifold $M^{n}$ into the Euclidean space $E^{m}$ and .DELTA. the Laplacian of $M^{n}$ defined by -div.omicron.grad. The family of such immersions satisfying the condition .DELTA.x = .lambda.x, .lambda..mem.R, is characterized by a well known result ot Takahashi (8]): they are either minimal in $E^{m}$ or minimal in some Euclidean hypersphere. As a generalization of Takahashi's result, many authors ([3,6,7]) studied the hypersurfaces $M^{n}$ in $E^{n+1}$ satisfying .DELTA.x = Ax + b, where A is a square matrix and b is a vector in $E^{n+1}$, and they proved independently that such hypersurfaces are either minimal in $E^{n+1}$ or hyperspheres or spherical cylinders. Since .DELTA.x = -nH, the submanifolds mentioned above satisfy .DELTA.H = .lambda.H or .DELTA.H = AH, where H is the mean curvature vector field of M. And the family of hypersurfaces satisfying .DELTA.H = .lambda.H was explored for some cases in [4]. In this paper, we classify space curves x : R .rarw. $E^{3}$ satisfying .DELTA.x = Ax + b or .DELTA.H = AH, and find conditions for such curves to be equivalent.alent.alent.

  • PDF

ON CHARACTERIZATIONS OF SPHERICAL CURVES USING FRENET LIKE CURVE FRAME

  • Eren, Kemal;Ayvaci, Kebire Hilal;Senyurt, Suleyman
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.391-401
    • /
    • 2022
  • In this study, we investigate the explicit characterization of spherical curves using the Flc (Frenet like curve) frame in Euclidean 3-space. Firstly, the axis of curvature and the osculating sphere of a polynomial space curve are calculated using Flc frame invariants. It is then shown that the axis of curvature is on a straight line. The position vector of a spherical curve is expressed with curvatures connected to the Flc frame. Finally, a differential equation is obtained from the third order, which characterizes a spherical curve.

HYPERSURFACES IN A 6-DIMENSIONAL SPHERE

  • Hashimoto, Hideya;Funabashi, Shoichi
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.23-42
    • /
    • 1997
  • A 6-dimensional sphere considered as a homogeneous space $G_2/SU(3)$ where $G_2$ is the group of automorphism of the octonians O. From this representation, we can define an almost comlex structure on a 6-dimensional sphere by making use of the vector cross product of the octonians. Also it is known that a homogeneous space $G_2/U(2)$ coincides with the Grassmann manifold of oriented 2-planes of a 7-dimensional Euclidean space.

  • PDF

AN ALGORITHM FOR FINDING THE DISTANCE BETWEEN TWO ELLIPSES

  • Kim, Ik-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.559-567
    • /
    • 2006
  • We are interested in the distance problem between two objects in three dimensional Euclidean space. There are many distance problems for various types of objects including line segments, boxes, polygons, circles, disks, etc. In this paper we present an iterative algorithm for finding the distance between two given ellipses. Numerical examples are given.

SOME BILINEAR ESTIMATES

  • Chen, Jiecheng;Fan, Dashan
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.609-620
    • /
    • 2009
  • We establish some estimates on the hyper bilinear Hilbert transform on both Euclidean space and torus. We also use a transference method to obtain a Kenig-Stein's estimate on bilinear fractional integrals on the n-torus.

GENERALIZED SMARANDACHE CURVES WITH FRENET-TYPE FRAME

  • Zehra Isbilir;Murat Tosun
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • In this study, we investigate Smarandache curves with Frenet-type frame in Myller configuration for Euclidean 3-space E3. Also, we introduce some characterizations and invariants of them. Then, we construct a numerical example with respect to these special Smarandache curves in order to understand the obtained materials.

HEAT EQUATION IN WHITE NOISE ANALYSIS

  • KimLee, Jung-Soon
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.541-555
    • /
    • 1996
  • The Fourier transform plays a central role in the theory of distribution on Euclidean spaces. Although Lebesgue measure does not exist in infinite dimensional spaces, the Fourier transform can be introduced in the space $(S)^*$ of generalized white noise functionals. This has been done in the series of paper by H.-H. Kuo [1, 2, 3], [4] and [5]. The Fourier transform $F$ has many properties similar to the finite dimensional case; e.g., the Fourier transform carries coordinate differentiation into multiplication and vice versa. It plays an essential role in the theory of differential equations in infinite dimensional spaces.

  • PDF