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Abstract. The orthogonal trajectories of the first tangents of the curve are called the

involutes of x. The hyperspheres which have higher order contact with a curve x are

known osculating hyperspheres of x. The centers of osculating hyperspheres form a curve

which is called generalized evolute of the given curve x in n-dimensional Euclidean space

En. In the present study, we give a characterization of involute curves of order k (resp.

evolute curves) of the given curve x in n-dimensional Euclidean space En. Further, we

obtain some results on these type of curves in E3 and E4, respectively.

1. Introduction

The notions of evolutes and involutes were studied by C. Huygens in his work
[7] and studied in differential geometry and singularity theory of planar curves [1].
The evolute of a regular curve in the Euclidean plane is given by not only the locus
of all its centres of the curvature, but also the envelope of normal lines of the regular
curve, namely, the locus of singular loci of parallel curves. On the other hand, the
involute of a regular curve is to replace the taut string by a line segment that is
tangent to the curve on one end, while the other end traces out the involute. In ([3],
[4]) T. Fukunaga and M. Takahashi defined the evolutes and the involutes of fronts
in the plane without inflection points and gave properties of them. Meanwhile,
E. Özyılmaz and S. Yılmaz studied the involute-evolute of W-curves in Euclidean
4-space E4 [13], see also, [16]. Recently, B. Divjak and Ž. M. Šipuš, considered the
isotropic involutes (of order k) and the isotropic evolutes in n-dimensional isotropic
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space I(1)n [2, 10].
This paper is organized as follows: Section 2 gives some basic concepts of Frenet

curves in Euclidean spaces. Section 3 gives some basic concepts of the involute
curves of order k in En. Section 4 explains some geometric properties about the
involute curves of order k in E3, where k = 1, 2. Section 5 tells about the involute
curves of order k in E4, where k = 1, 2, 3. Further these sections provides some
properties and results of these type of curves. In the final section we consider
generalized evolute curves in En. Moreover, we present some results of generalized
evolute curves in E3 and E4, respectively.

2. Basic Concepts

Let x = x(t) : I ⊂ R → En be a regular curve in En, (i.e., ∥x′(t)∥ ̸= 0). Then x
is called a Frenet curve of osculating order d, (2 ≤ d ≤ n) if x′(t), x′′(t),. . . ,x(d)(t)
are linearly independent and x′(t), x′′(t),. . . ,x(d+1)(t) linearly dependent for all t in
I. For the case d = n, the Frenet curve x is called generic curve in En [17]. From
now on we assume that x is a generic curve in En. To each generic curve x one can

associates an orthonormal d-frame V1 = x′(t)
∥x′(t)∥ , V2, V3 . . . , Vn along x, the Frenet

n-frame, and n − 1 functions κ1, κ2, . . . , κn−1:I −→ R, the Frenet curvature, such
that

(2.1)


V

′

1

V
′

2

V
′

3

. . .

V
′

n

 = v


0 κ1 0 . . . 0

−κ1 0 κ2 . . . 0
0 −κ2 0 . . . 0
. . . κn−1

0 0 . . . −κn−1 0



V1
V2
V3
. . .
Vn


where, v = ∥x′(t)∥ is the speed of the curve x. In fact, to obtain V1, V2, V3 . . . , Vn,
it is sufficient to apply the Gram-Schmidt orthonormalization process to x′(t),
x′′(t), . . . , x(n)(t). Moreover, the functions κ1, κ2, . . . , κn−1 are easily obtained as
by-product during this calculation.

More precisely, V1, V2, V3 . . . , Vn and κ1, κ2, . . . , κn−1 are determined by the
following formulas:

E1(t) : = x′(t),

Eα(t) : = x(α)(t)−
α−1∑
i=1

< x(α)(t), Ei(t) >
Ei(t)

∥Ei(t)∥2
,(2.2)

Vα : =
Eα(t)

∥Eα(t)∥
, 1 ≤ α ≤ n

and

(2.3) κδ(t) :=
∥Eδ+1(t)∥

∥Eδ(t)∥ ∥E1(t)∥
,
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respectively, where δ ∈ {1, 2, 3, . . . , n− 1} (see, [5]).
The osculating hyperplane of a generic curve x at t is the subspace generated

by {V1, V2, V3 . . . , Vn} that passes through x(t). The unit vector Vn(t) is called
binormal vector of x at t. The normal hyperplane of x at t is defined to be the one
generated by {V2, V3 . . . , Vn} passing through x(t) [14].

A Frenet curve of rank d for which the first Frenet curvature κ1 is constant is
called a Salkowski curve [15] (or T.C-curve [8]). Further, a Frenet curve for which
κ1, κ2, . . . , κn−1 are constant is called (circular) helix orW -curve [9]. Meanwhile, a
Frenet curve with constant curvature ratios κ2

κ1
, κ3

κ2
, κ4

κ3
, . . . , κn−1

κn−2
is called a ccr-curve

(see, [12], [11]). A ccr-curve in E3 is known as generalized helix.
Given a generic curve x in E4, the Frenet 4-frame, V1, V2, V3, V4 and the Frenet

curvatures κ1, κ2, κ3 are given by

V1(t) =
x′(t)

∥x′(t)∥

V4(t) =
x′(t) ∧ x′′(t) ∧ x′′′(t)
∥x′(t) ∧ x′′(t) ∧ x′′′(t)∥

(2.4)

V3(t) =
V4(t) ∧ x′(t) ∧ x′′(t)
∥V4(t) ∧ x′(t) ∧ x′′(t)∥

V2(t) =
V3(t) ∧ V4(t) ∧ x′(t)
∥V3(t) ∧ V4(t) ∧ x′(t)∥

and

(2.5) κ1(t) =
⟨V2(t), x′′(t)⟩

∥x′(t)∥2
, κ2(t) =

⟨V3(t), x′′′(t)⟩
∥x′(t)∥3 κ1(t)

, κ3(t) =
⟨V4(t), x′′′′(t)⟩

∥x′(t)∥4 κ1(t)κ2(t)
.

respectively, where ∧ is the exterior product in E4 [5].

3. Involute Curves of Order k in En

Definition 3.1. Let x = x(s) be a regular generic curve in En given with the
arclength parameter s (i.e., ∥x′(s)∥ = 1). Then the curves which are orthogonal to
the system of k-dimensional osculating hyperplanes of x, are called the involutes of
order k [2] (or, kth involute [6]) of the curve x. For simplicity, we call the involutes
of order 1, simply the involutes of the given curve.

In order to find the parametrization of involutes x of order k of the curve x, we
put

(3.1) x(s) = x(s) +

k∑
α=1

λα(s)Vα(s), k ≤ n− 1

where λα is a differentiable function and s is the parameter of x which is not
necessarily an arclength parameter. The differentiation of the equation (3.1) and
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the Frenet formulae (2.1) are given in the following equation

x′(s) = (1 + λ′1 − κ1λ2) (s)V1(s)

+

k−1∑
α=2

(λ′α − λα+1κα + λα−1κα−1) (s)Vα(s)(3.2)

+ (λ′k + λk−1κk−1) (s)Vk(s) + κk(s)λk(s)Vk+1(s).

Furthermore, the involutes x of order k of the curve x are determined by

⟨x′(s), Vj(s)⟩ = 0, 1 ≤ j ≤ k, k ≤ n− 1.

This condition is satisfied if and only if

1 + λ′1 − κ1λ2 = 0,

λ′α − λα+1κα + λα−1κα−1 = 0,(3.3)

λ′k + λk−1κk−1 = 0,

where 2 ≤ α ≤ n− 1 [2].
In the sequel we characterize the involutes of generic curves in E3 and E4.

4. Involutes in E3

In the present section we consider involutes of order 1 and of order 2 of curves
in Euclidean 3-space E3, respectively.

4.1. Involutes of Order 1 in E3

Proposition 4.1.1. Let x = x(s) be a regular curve in E3 given with nonzero
Frenet curvatures κ1 and κ2. Then Frenet curvatures κ1 and κ2 of the involute x of
the curve x are given by

(4.1) κ1 =

√
κ21 + κ22

|κ1| |s− c|
, κ2 =

(
κ2

κ1

)′
κ21

(κ21 + κ22) (c− s)
.

Proof. Let x = x(s) be the involute of the curve x in E3. Then by the use of (3.2)
with (3.3) we get 1 + λ′1(s) = 0, and furthermore λ(s) = (c− s) for some integral
constant c. So, we get the following parametrization

(4.2) x(s) = x(s) + (c− s)V1(s).

Further, the differentiation of (4.2) implies that

x′(s) = φV2, φ(s) := λ(s)κ1(s)

x′′(s) = −φκ1V1 + φ′V2 + φκ2V3,

x′′′(s) = −
{
(κ1φ)

′
+ κ1φ

′}V1 + {φ′′ − κ21φ− κ22φ
}
V2 +

{
(κ2φ)

′
+ κ2φ

′}V3.
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Now, an easy calculation gives

∥x′(s)∥ = |φ| = |(c− s)κ1| ,

∥x′(s)× x′′(s)∥ = φ2
√
κ21 + κ22,(4.3)

⟨x′(s)× x′′(s), x′′′(s)⟩ = φ3 (κ1κ
′
2 − κ2κ

′
1) .

The parameter s is not the arclength parameter of x, so, as is shown in [2], we
have

(4.4) κ1 =
∥x′(s)× x′′(s)∥

∥x′(s)∥3
, κ2 =

⟨x′(s)× x′′(s), x′′′(s)⟩
∥x′(s)× x′′(s)∥2

Hence, from the relations (4.3) and (4.4) we deduce (4.1). 2

By the use of (4.1) one can get the following result.

Corollary 4.1.2. If x = x(s) is a cylindrical helix in E3, then the involute x of x
is a planar curve.

4.2. Involutes of Order 2 in E3

An involute of order 2 of a regular curve x in E3 has the parametrization

(4.5) x(s) = x(s) + λ1(s)V1(s) + λ2(s)V2(s)

where V1, V2 are tangent and normal vectors of x in E3 and λ1, λ2 are differentiable
functions satisfying

(4.6)
λ′1(s) = κ1(s)λ2(s)− 1,
λ′2(s) = −λ1(s)κ1(s).

We obtain the following result.

Proposition 4.2.1. Let x = x(s) be a regular curve in E3 with nonzero Frenet
curvatures κ1 and κ2. Then

(4.7) κ1 =
sgn(κ2)

|λ2|
, κ2 =

κ2

κ1

λ2

holds, where κ1 and κ2 are Frenet curvatures of x.

Proof. Let x = x(s) be the involute of order 2 of the curve x in E3. Then by the
use of (3.2) with (3.3) we get

(4.8) x′(s) = λ2(s)κ2(s)V3(s).

Further, the differentiation of (4.8) implies that

x′(s) = ψ(s)V3(s), ψ(s) := λ2(s)κ2(s)

x′′(s) = −ψ(s)κ2(s)V2(s) + ψ′(s)V3(s),

x′′′(s) = −ψ(s)κ1(s)κ2(s)V1(s)−
{
(ψ(s)κ2(s))

′
+ κ2(s)ψ

′(s)
}
V2(s)

+
{
ψ′′(s) + ψ(s)κ22(s)

}
V3(s).
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Now, an easy calculation gives

∥x′(s)∥ = |ψ(s)| = |λ2(s)κ2(s)| ,
∥x′(s)× x′′(s)∥ = ψ(s)2κ2(s),(4.9)

⟨x′(s)× x′′(s), x′′′(s)⟩ = ψ(s)3κ1(s)κ
2
2(s).

Hence, from the relations (4.4) and (4.9) we deduce (4.7). 2

Corollary 4.2.2. The involute x of order 2 of a generalized helix in E3 is also a
generalized helix in E3.

Solving the system of differential equations (4.6) we get the following result.

Corollary 4.2.3. Let x = x(s) be a unit speed Salkowski curve in E3. Then the
involute x of order 2 of the curve x has the parametrization (4.5) given with the
coefficient functions

λ1(s) = c1 sin(κ1s) + c2 cos(κ1s),

λ2(s) = c1 cos(κ1s)− c2 sin(κ1s)−
1

κ1
.(4.10)

where c1 and c2 are real constants.

5. Involutes in E4

In the present section we consider involutes of order k, 1 ≤ k ≤ 3 of a given
curve x in Euclidean 4-space E4.

5.1. Involutes of Order 1 in E4

The following result gives a simple representation of Theorem 1 in [16].

Proposition 5.1.1. Let x = x(s) be a regular curve in E4 given with the Frenet
curvatures κ1, κ2 and κ3. Then Frenet 4-frame, V 1, V 2, V 3 and V 4 and Frenet
curvatures κ1, κ2 and κ3 of the involute x of the curve x are given by

V 1(s) = V2,

V 2(s) =
−κ1V1 + κ2V3√

κ21 + κ22
,

V 3(s) =
− (κ2A− κ1C)κ2V1 − (κ2A− κ1C)κ1V3 +D

(
κ21 + κ22

)
V4

W
√
κ21 + κ22

,(5.1)

V 4(s) =
Dκ2V1 +Dκ1V3 − (κ2A− κ1C)V4

W
,
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and

κ1 =

√
κ21 + κ22
|φ|

; φ := (c− s)κ1,

κ2 =
W

φ2 (κ21 + κ22)
,(5.2)

κ3 = − (κ2A− κ1C) (κ3C +D′) +D (κ2A
′ − κ1C

′) +D2κ1κ3
Wφ4κ1κ2

,

respectively, where

A = κ′1φ+ 2κ1φ
′

C = κ′2φ+ 2κ2φ
′

D = κ2κ3φ

and

W =

√
D2 (κ21 + κ22) + (κ1C − κ2A)

2
(5.3)

= |φ|
√
κ22κ

2
3 (κ

2
1 + κ22) + (κ1κ′2 − κ2κ′1)

2
.

Proof. As in the proof of Proposition 4.1.1, the involute x = x(s) of the curve x in
E4 has the parametrization

x(s) = x(s) + (c− s)V1(s),

where V1 is the unit tangent vector of x.
Further, the differentiation of the position vector x(s) implies that

x′(s) = φV2,

x′′(s) = −φκ1V1 + φ′V2 + φκ2V3,(5.4)

x′′′(s) = −
{
(κ1φ)

′
+ κ1φ

′}V1 + {φ′′ − κ21φ− κ22φ
}
V2

+
{
(κ2φ)

′
+ κ2φ

′}V3 + φκ2κ3V4,

where φ = (c− s)κ1 is a differentiable function. Consequently, substituting

A = κ′1φ+ 2κ1φ
′

B = φ′′ − κ21φ− κ22φ(5.5)

C = κ′2φ+ 2κ2φ
′

D = φκ2κ3,

the last vector becomes

(5.6) x′′′ = −AV1 +BV2 + CV3 +DV4.
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Furthermore, differentiating x′′′ with respect to s, we get

x′′′′ = −{A′ + κ1B}V1 + {−κ1A− κ2C +B′}V2
+ {κ2B − κ3D + C ′}V3 + {D′ + κ3C}V4.(5.7)

Now, by the use of (5.4), we can compute the vector x′(s)∧x′′(s)∧x′′′(s) and second
principal normal of x as the following;

x′(s) ∧ x′′(s) ∧ x′′′(s) = φ2 {Dκ2V1 +Dκ1V3 + (κ1C − κ2A)V4}

and

(5.8) V 4(s) =
x′(s) ∧ x′′(s) ∧ x′′′(s)
∥x′(s) ∧ x′′(s) ∧ x′′′(s)∥

=
Dκ2V1 +Dκ1V3 − (κ2A− κ1C)V4

W
,

where

(5.9) W =

√
D2 (κ21 + κ22) + (κ2A− κ1C)

2
.

Similarly,

V 4(s) ∧ x′(s) ∧ x′′(s) =
φ2

W

{
− (κ2A− κ1C)κ2V1 − (κ2A− κ1C)κ1V3 +D

(
κ2
1 + κ2

2

)
V4

}
and

V 3(s) =
V 4(s) ∧ x′(s) ∧ x′′(s)∥∥V 4(s) ∧ x′(s) ∧ x′′(s)

∥∥
=

− (κ2A− κ1C)κ2V1 − (κ2A− κ1C)κ1V3 +D
(
κ21 + κ22

)
V4

W
√
κ21 + κ22

.(5.10)

Finally, the vectors V 3(s) ∧ V 4(s)∧ x′(s) and V 2(s) are

V 3(s) ∧ V 4(s) ∧ x′(s) = φ
{
D2
(
κ21 + κ22

)
− (κ2A− κ1C)

2
}
(−κ1V1 + κ2V3)

and

(5.11) V 2(s) =
V 3(s) ∧ V 4(s) ∧ x′(s)∥∥V 3(s) ∧ V 4(s) ∧ x′(s)

∥∥ =
−κ1V1 + κ2V3√

κ21 + κ22
.

Consequently, an easy calculation gives⟨
V 2(s), x

′′(s)
⟩
=φ
√

κ2
1 + κ2

2⟨
V 3(s), x

′′′(s)
⟩
=

W√
κ2
1 + κ2

2

(5.12)

⟨
V 4(s), x

′′′′(s)
⟩
=− (κ2A− κ1C) (κ3C +D′) +D (κ2A

′ − κ1C
′) +D2κ1κ3

W
.
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Hence, from the relations (5.12) and (4.4) we deduce (5.2). This completes the
proof of the proposition. 2

If x is a W -curve we find the following results.

Corollary 5.1.2. Let x be an involute of a generic x curve in E4 given with
the Frenet curvatures κ1, κ2 and κ3. If x is a W -curve then the Frenet 4-frame,
V 1, V 2, V 3 and V 4 and the Frenet curvatures κ1, κ2 and κ3 of the involute x of the
curve x are given by

V 1(s) = V2,

V 2(s) =
−κ1V1 + κ2V3√

κ21 + κ22

V 3(s) = V4(5.13)

V 4(s) =
κ2V1 + κ1V3√

κ21 + κ22
,

and

κ1 =

√
κ21 + κ22
|φ|

,

κ2 =
κ2κ3

|φ|
√
κ21 + κ22

,(5.14)

κ3 =
−κ1κ3

|φ|
√
κ21 + κ22

respectively, where φ = (c− s)κ1.

Corollary 5.1.3. Let x be an involute of a generic curve x in E4 given with the
Frenet curvatures κ1, κ2 and κ3. If x is a W -curve then x becomes a ccr-curve.

Proof. Let x be a regular W -curve of E4. Since the ratios

κ2
κ1

=
κ2κ3
κ21 + κ22

κ3
κ2

= −κ1
κ2

are constant functions then the involute curve x is a ccr-curve. 2

5.2. Involutes of Order 2 in E4

An involute of order 2 of a regular curve x in E4 has the parametrization

(5.15) x(s) = x(s) + λ1(s)V1(s) + λ2(s)V2(s)
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where V1, V2 are tangent and normal vectors of x in E4 and λ1, λ2 are differentiable
functions satisfying

λ′1(s) = κ1(s)λ2(s)− 1,

λ′2(s) = −λ1(s)κ1(s).(5.16)

As in the previous subsection we get the following result.

Corollary 5.2.1. Let x = x(s) be a unit speed Salkowski curve in E4. Then the
involute x of order 2 of the curve x has the parametrization (5.15) given with the
coefficient functions

λ1(s) = c1 sin(κ1s) + c2 cos(κ1s),

λ2(s) = c1 cos(κ1s)− c2 sin(κ1s)−
1

κ1
.(5.17)

where c1 and c2 are real constants.

Proof. Assume that x = x(s) is a unit speed Salkowski curve in E4 then κ1(s) is a
constant function. So, differentiating first equation of (5.16) and using the second
equation we get

λ′′1(s) = −κ21λ1(s)
which has a solution λ1(s) = c1 sin(κ1s)+c2 cos(κ1s). And substituting this function
into the first equation of (5.16) we obtain the second equation of (5.17). 2

We obtain the following result.

Proposition 5.2.2. Let x = x(s) be a regular curve in E4 given with nonzero
Frenet curvatures κ1, κ2 and κ3. Then Frenet 4-frame, V 1, V 2, V 3 and V 4 and
Frenet curvatures κ1, κ2 and κ3 of the involute x of order 2 of a regular curve x in
E4 are given by

V 1(s) = V3,

V 2(s) =
−κ2V2 + κ3V4√

κ22 + κ23
,

V 3(s) =
K
(
κ22 + κ23

)
V1 + (κ2N − κ3L)κ3V2 + (κ2N − κ3L)κ2V4

W
√
κ22 + κ23

,(5.18)

V 4(s) =
(κ2N − κ3L)V1 + κ3KV2 + κ2KV4

W
,

and

κ1 =

√
κ22 + κ23
|ϕ|

; ϕ := λ2(s)κ2(s)

κ2 =
W

ϕ2 (κ22 + κ23)
,(5.19)

κ3 =
(κ2N − κ3L) (κ1L+K ′) + (κ2N

′ − κ3L
′)K + κ1κ3K

2

Wϕ4κ1κ2
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where

K = κ1κ2ϕ

L = 2κ2ϕ
′ + κ′2ϕ

N = 2κ3ϕ
′ + κ′3ϕ

and

W =

√
K2 (κ22 + κ23) + (κ2N − κ3L)

2
(5.20)

= |ϕ|
√
κ21κ

2
2 (κ

2
2 + κ23) + (κ2κ′3 − κ3κ′2)

2
.

Proof. Let x = x(s) be the involute of order 2 of the curve x in E4. Then by the
use of (3.2), we get

(5.21) x′(s) = ϕV3

where ϕ = λ2(s)κ2(s) is a differentiable function. Further, the differentiation of
(5.21) implies that

x′′(s) = −ϕκ2V2 + ϕ′V3 + ϕκ3V4,

x′′′(s) = κ1κ2ϕV1 + {2κ2ϕ′ + κ′2ϕ}V2,(5.22)

+
{
ϕ′′ − κ22ϕ− κ23ϕ

}
V3 + {2κ3ϕ′ + κ′3ϕ}V4.

Consequently, substituting

K = κ1κ2ϕ

L = 2κ2ϕ
′ + κ′2ϕ(5.23)

M = ϕ′′ − κ22ϕ− κ23ϕ

N = 2κ3ϕ
′ + κ′3ϕ

the last vector becomes

(5.24) x′′′ = KV1 − LV2 +MV3 +NV4.

Furthermore, differentiating x′′′ with respect to s we get

x′′′′ = {K ′ + κ1L}V1 + {κ1K − κ2M − L′}V2
+ {M ′ − κ2L− κ3N}V3 + {N ′ + κ3M}V4.(5.25)

Hence, substituting (5.21)-(5.25) into (2.4) and (2.5), after some calculations as
in the previous proposition, we get the result. 2

If x is a W -curve then we find the following results.
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Corollary 5.2.3. Let x be an involute of order 2 of a generic curve x in E4 given
with the Frenet curvatures κ1, κ2 and κ3. If x is a W-curve then the Frenet 4-frame,
V 1, V 2, V 3 and V 4 and Frenet curvatures κ1, κ2 and κ3 of the involute x of order
2 of a regular curve x in E4 are given by

V 1(s) = V3,

V 2(s) =
−κ2V2 + κ3V4√

κ22 + κ23

V 3(s) = V1(5.26)

V 4(s) =
κ3V2 + κ2V4√

κ22 + κ23
,

and

κ1 =

√
κ22 + κ23
|ϕ|

,

κ2 =
κ1κ2

|ϕ|
√
κ22 + κ23

,(5.27)

κ3 =
κ1κ3

|ϕ|
√
κ22 + κ23

where ϕ(s) = λ2(s)κ2(s).

Corollary 5.2.4. Let x be an involute of order 2 of a generic curve x in E4 given
with the Frenet curvatures κ1, κ2 and κ3. If x is a W -curve then x becomes a
ccr-curve.

Proof. Let x be a regular W -curve of E4. Since the ratios

κ2
κ1

=
κ1κ2
κ22 + κ23

κ3
κ2

= −κ3
κ2

are constant functions then the involute curve x is a ccr-curve. 2

5.3. Involutes of Order 3 in E4

An involute of order 3 of a regular curve x in E4 has the parametrization

(5.28) x(s) = x(s) + λ1(s)V1(s) + λ2(s)V2(s) + λ3(s)V3(s)

where

(5.29)
λ′1(s) = κ1(s)λ2(s)− 1,
λ′2(s) = λ3κ2 − λ1κ1
λ′3(s) = −λ2(s)κ2(s).
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By solving the system of differential equations in (5.29) we get the following
result.

Corollary 5.3.1. Let x = x(s) be a unit speed W-curve in E4. Then the involute
x of order 3 of the curve x has the parametrization (5.28) given with the coefficient
functions

λ1(s) =
κ1 (c1 sin(

√
κs)− c2 cos(

√
κs))√

κ
− κ22s

κ
+ c3,

λ2(s) = c1 cos(
√
κs) + c2 sin(

√
κs) +

κ1
κ
,(5.30)

λ3(s) =
κ2 (c2 cos(

√
κs)− c1 sin(

√
κs))√

κ
− κ1κ2s

κ
+ c4,

where κ = κ21 + κ22, c1, c2, c3and c4 are real constants.

Proof. Suppose that x is a unit speed W -curve in E4 then the Frenet curvatures
κ1, κ2 and κ3 of x are constant functions. Consequently, if x is the involute of x
which is an order 3 curve then (5.29) holds. Differentiating the second equation of
(5.29) and using the others we get λ2(s) = c1 cos(

√
κs)+ c2 sin(

√
κs)+ κ1

κ . Further,
substituting this function into (5.29) we get the result. 2

We obtain the following result.

Proposition 5.3.2. Let x = x(s) be a regular curve in E4 given with nonzero
Frenet curvatures κ1, κ2 and κ3. Then Frenet 4-frame, V 1, V 2, V 3 and V 4 and
Frenet curvatures κ1, κ2 and κ3 of the involute x of order 3 of a regular curve x in
E4 are given by

V 1(s) = V4,

V 2(s) = −V3,(5.31)

V 3(s) = V2,

V 4(s) = V1,

and

κ1 =
κ3
|ψ|

,

κ2 =
κ2
|ψ|

,(5.32)

κ3 = − κ1
|ψ|

,

where ψ(s) = λ3(s)κ3(s).

Proof. Let x = x(s) be the involute of order 3 of the curve x in E4. Then by the
use of (3.2) with (3.3), we get

(5.33) x′(s) = ψV4
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where ψ = λ3(s)κ3(s) is a differentiable function. Further, the differentiation of
(5.33) implies that

x′′(s) = −ψκ3V3 + ψ′V4,

x′′′(s) = κ2κ3ψV2 − {2κ′3ψ + κ′3ϕ}V3 +
{
ψ′′ − κ23ψ

}
V4.

Consequently, substituting

E = κ2κ3ψ

F = 2κ′3ψ + κ′3ϕ(5.34)

G = ψ′′ − κ23ψ

the last vector becomes

(5.35) x′′′ = EV2 − FV3 +GV4.

Furthermore, differentiating x′′′ with respect to s we get

x′′′′ = −κ1EV1 + {κ2F + E′}V2
+ {κ2E − κ3G− F ′}V3 + {G′ − κ3F}V4.(5.36)

Hence, substituting (5.33)-(5.36) into (2.4) and (2.5), after some calculations we get
the result. 2

Corollary 5.3.3. The involute x of order 3 of a ccr-curve x in E4 is also a ccr-
curve of E4.

Proof. Let x be a regular ccr-curve of E4. Since the ratios

κ2
κ1

=
κ2
κ3

κ3
κ2

= −κ1
κ2

are constant functions then the involute curve x is also a ccr-curve. 2

6. Generalized Evolute Curves in Em+1

Let x = x(s) be a generic curve in En given with Frenet frame V1, V2, V3, . . . , Vn
and Frenet curvatures κ1, κ2, . . . , κn−1. For simplicity, we can take n = m + 1, to
construct the Frenet frame V1 = T, V2 = N1, V3 = N2, . . . , Vn = Nm and Frenet
curvatures κ1, κ2, . . . , κm. The centre of the osculating hypersphere of x at a point
lies in the hyperplane normal to the x at that point. The curve passing through
the centers of the osculating hyperspheres of x defined by

(6.1) x̃ = x+
m∑
i=1

ciNi,
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which is called generalized evolute (or focal curve) of x, where c1, c2, . . . , cm are
smooth functions of the parameter of the curve x. The function ci is called the ith

focal curvature of γ. Moreover, the function c1 never vanishes and c1 = 1
k1

[18].
The differentiation of the equation (6.1) and the Frenet formulae (2.1) give the

following equation

x̃′(s) = (1− κ1c1)T + (c′1 − κ2c2)N1

+
m−1∑
i=2

(ci−1κi + c′i − ci+1κi+1)Ni + (cm−1κm + c′m)Nm.(6.2)

Since, the osculating planes of x̃ are the normal planes of x, and the points of x̃ are
the center of the osculating sphere of x then the generalized evolutes x̃ of the curve
x are determined by

(6.3) ⟨x̃′(s), T (s)⟩ = ⟨x̃′(s), N1(s)⟩ = . . . = ⟨x̃′(s), Nm−1(s)⟩ = 0.

This condition is satisfied if and only if

1− κ1c1 = 0

c′1 − κ2c2 = 0

...(6.4)

ci−1κi + c′i − ci+1κi+1 = 0, 2 ≤ i ≤ m− 1.

hold. So, the focal curvatures of a curve parametrized by arclength s satisfy the
following ”scalar Frenet equation” for cm ̸= 0 :

(6.5)
R2

m

2cm
= cm−1κm + c′m

where

Rm = ∥x̃− x∥ =
√
c21 + c22 + . . .+ c2m

is the radius of the osculating m-sphere [18]. Consequently, the generalized evolutes
x̃ of the curve x are represented by the formulas (6.1), and

(6.6) x̃′(s) = (cm−1κm + c′m)Nm.

If x̃′(s) = 0, then Rm is constant and the curve x is spherical.
From the equalities in (6.4) one can get (see, [18])

(6.7) κi =
c1c

′
1 + c2c

′
2 + . . .+ ci−1c

′
i−1

ci−1ci
.

The following result gives the relations between the Frenet frames and Frenet
curvatures of x and its evolute x̃.



132 G. Öztürk, K. Arslan and B. Bulca

Theorem 6.1.([18]) Let x = x(s) be a generic curve in Em+1 given with Frenet
frame T,N1, N2, . . . , Nm and Frenet curvatures κ1, κ2, . . . , κm. Then Frenet frame
T̃ , Ñ1, Ñ2, . . . , Ñm and Frenet curvatures κ̃1, κ̃2, . . . , κ̃m of the generalized evolute x̃
of x in Em+1 are given by

T̃ = ϵNm

Ñk = δkNm−k; 1 ≤ k ≤ m− 1(6.8)

Ñm = ±T

and

(6.9)
κ̃1
|κm|

=
κ̃2

κm−1
= . . . =

|κ̃m|
κ1

=
1

|cm−1κm + c′m|

where ϵ(s) is the sign of (cm−1κm + c′m) (s) and δk the sign of (−1)kϵ(s)κm(s).

6.1. Evolutes in E3

A generalized evolute of a regular curve x in E3 has the parametrization

(6.10) x̃(s) = x(s) + c1(s)N1(s) + c2(s)N2(s)

where N1 and N2 are normal vectors of x in E3 and c1, c2 are focal curvatures
satisfying

(6.11) c1(s) =
1

κ1(s)
, c2(s) =

ρ′(s)

κ2(s)
.

where ρ = c1 = 1
κ1

is the radius of the curvature of x.

We obtain the following result.

Proposition 6.1.1. Let x = x(s) be a regular curve in E3 given with nonzero
Frenet curvatures κ1 and κ2. Then Frenet curvatures κ̃1 and κ̃2 of the evolute x̃ of
the curve x are given by

(6.12) κ̃1 =
κ22

|ρκ22 + ρ′|
, κ̃2 =

κ1κ2
|ρκ22 + ρ′|

.

where ρ = 1
κ1

is the radius of the curvature of x.

Proof. As a consequence of (6.9) we get (6.12). 2

Corollary 6.1.2. The evolute x̃ of a generalized helix in E3 is also a generalized
helix in E3.

By the use of (6.5) with (6.11) one can get the following result.
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Corollary 6.1.3. A regular curve with nonzero curvatures κ1 and κ2 lies on a
sphere if and only if

(6.13)

(
ρ′

κ2

)′

+ ρκ2 = 0

holds, where ρ = 1
κ1

is the radius of the curvature of x.

6.2. Evolutes in E4

A generalized evolute of a generic curve x in E4 has the parametrization

(6.14) x̃(s) = x(s) + c1(s)N1(s) + c2(s)N2(s) + c3(s)N3(s)

where N1, N2 and N3 are normal vectors of x in E4 and c1, c2 and c3 are focal
curvatures satisfying

(6.15) c1(s) =
1

κ1(s)
, c2(s) =

ρ′(s)

κ2(s)
, c3(s) =

ρ(s)κ2(s) +
(

ρ′(s)
κ2(s)

)′
κ3(s)

.

where ρ = 1
κ1

is the radius of the curvature of x.
We obtain the following result.

Proposition 6.2.1. Let x = x(s) be a regular curve in E4 given with nonzero

Frenet curvatures κ1, κ2 and κ3. Then Frenet 4-frame, T̃ , Ñ1, Ñ2 and Ñ3 and Frenet
curvatures κ̃1, κ̃2 and κ̃3 of the evolute x̃ of a regular curve x in E4 are given by

T̃ (s) = N3,

Ñ1(s) = −N2,(6.16)

Ñ2(s) = N1,

Ñ3(s) = T,

and

κ̃1 =
κ3
|ψ|

,

κ̃2 =
κ2
|ψ|

,(6.17)

κ̃3 = − κ1
|ψ|

where ψ(s) = c2(s)κ3(s) + c′3(s) is a smooth function.

Proof. As a consequence of (6.8) with (6.9) we get the result. 2

Corollary 6.2.2. The evolute x̃ of a ccr-curve x in E4 is also a ccr-curve of E4.
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Proof. Let x be a regular ccr-curve of E4. Since the ratios

κ̃2
κ̃1

=
κ2
κ3

κ̃3
κ̃2

= −κ1
κ2

are constant functions then the evolute curve x̃ is also a ccr-curve. 2

By the use of (6.6) with (6.11) one can get the following result.

Corollary 6.2.3. A regular curve with nonzero curvatures κ1, κ2 and κ3 lies on a
sphere if and only if

(6.18)

ρ(s)κ2(s) +
(

ρ′(s)
κ2(s)

)′
κ3(s)


′

+ ρ′(s)
κ3(s)

κ2(s)
= 0

holds, where ρ = 1
κ1

is the radius of the curvature.

Proposition 6.2.4. [11] A curve x = x(s) : I ⊂ R → E4 is a spherical, i.e., it is
contained in a sphere of radius R, if and only if x can be decomposed as

(6.19) x(s) = m− R

κ1
N1(s) +

Rκ′1
κ2κ21

N2(s) +
R

κ3

(
κ′1
κ2κ21

)′

N3(s).

where m is the center of the sphere.
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[8] B. Kılıç, K. Arslan and G. Öztürk, Tangentially cubic curves in Euclidean spaces,
Differ. Geom. Dyn. Syst., 10(2008), 186–196.

[9] F. Klein and S. Lie, Uber diejenigen ebenenen kurven welche durch ein geschlossenes
system von einfach unendlich vielen vartauschbaren linearen Transformationen in sich
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[13] E. Özyılmaz and S. Yılmaz, Involute-Evolute curve couples in the Euclidean 4-space,
Int. J. Open Probl. Comput. Sci. Math., 2(2)(2009), 168–174.

[14] M. C. Romero-Fuster and E. Sanabria-Codesal, Generalized evolutes, vertices and
conformal invariants of curves in Rn+1, Indag. Math., 10(1999), 297–305.

[15] E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66(4)(1909), 517–
557.

[16] M. Turgut and T. A. Ali, Some characterizations of special curves in the Euclidean
space E4, Acta Univ. Sapientiae Math., 2(1)(2010), 111–122.

[17] R. Uribe-Vargas, On singularites, ”perestroikas” and differential geometry of space
curves, Enseign. Math., 50(2004), 69–101.

[18] R. Uribe-Vargas, On vertices, focal curvatures and differential geometry of space
curves, Bull Braz. Math. Soc, 36(2005), 285–307.


