• Title/Summary/Keyword: Etching-Free

Search Result 129, Processing Time 0.027 seconds

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb;Kim, Yark-Yeon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Lim, Byeong-Ok;Kim, Sung-Chan;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

The characteristics of AlNd thin film for TFT-LCD bus line (TFT-LCD bus line용 AlNd 박막 특성에 관한 연구)

  • Dong-Sik Kim;Sung Kwan Kwak;Kwan Soo Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.237-241
    • /
    • 2000
  • The structural, electrical and etching characteristics of Al alloy thin film with low impurity concentrations AlNd deposited by using do magnetron sputtering deposition are investigated for the applications as gate bus line in the TFt-LCD panel. And ITO thin film was deposited on AlNd, then the contact resistance was measured by Kelvin resistor. The deposited thin films show the decrease of resistivity and the increase of grain size after the RTA at $300^{\circ}C$ for 20 min. Moreover, the resistivity of AlNd does not show appreciable grain size dependence after RTA. It is concluded that the decrease of resistivity after RTA is due to the increase of grain size. The annealed AlNd is found to be hillock free. The etching profiles of AlNd was good and the minimun contact resistance was about $110\;{\mu\Omega}cm$. Calculation results reveal that the AlNd (2wt.%) thin film can be applicable to 25" SXGA class TFT-LCD panels.

  • PDF

Convergence Study on FTO Film Etchant (FTO 필름 식각액에 관한 융합연구)

  • Han, Doo-Hee;Yang, Ui-Dong
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.43-48
    • /
    • 2018
  • An etchant capable of forming a circuit in an FTO film that can replace ITO, which depends on full imports, was prepared. The etching solution is composed of 1 to 30% by weight of fluoride, 1 to 20% by weight of acid, 0.5 to 5% by weight of surfactant, 5 to 20% by weight of solvent, 0.5 to 10% by weight of corrosion inhibitor and the balance of water. This etchant can be etched using a dry film, thereby reducing the cost, and is free from bubbles and residue of the etchant. The characteristics of the etchant were etched in a time of 2 minute with a 100 nm thick FTO, and the etchant temperature was maintained at $50^{\circ}C$. An undercut of -0.00364% was obtained when put into a 2 minute etching solution. No harmful substances such as Cd, Pb, Hg and Cr components were measured. The use of FTO in Korea where rare earths do not exist can achieve localization and import substitution effect.

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

MICROLEAKAGE AND MARGINAL HYBRID LAYER OF DENTIN ADHESIVES (상아질 접착제의 미세누출과 변연부 혼화층)

  • Cho, Young-Gon;Kim, Young-Kwan;Ahn, Jong-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.34-43
    • /
    • 2002
  • The purpose of this study was to compare microleakage and marginal hybrid layer in class V restorations using two one-bottle adhesives and one self-etching adhesive. Class V cavity preparations with occlusal margins in enamel and gingival margins in dentin were pre-pared on buccal and lingual surfaces of 30 extracted human molar teeth. Prepared teeth were randomly divided into three treatment groups (n=30) and restored with three adhesives and composites: Single Bond/Filtek Z-250 (Group 1), Prime&BondNT/Esthet.X (Group 2), UniFil Bond/UniFil F (Group 3). For microleakage, samples were stored in room temperature water for 24 hours, thermocycled stained with 2% methylene blue dye, sectioned into halves, scored and analysed using Mann-whitney test and Wilcoxon signed rank sum test. For marginal hybrid layer, samples were sectioned into halves, treated with 10% phosphoric acid for 5 seconds, stored in 5% NaOCL solution for 24 hours, dried and gold coated. Occlusal and gingival margins of each sample were inspected under SEM. The results of this study were as follows ; 1. Microleakage at the occlusal margins was not evident in group 1 and group 2, but it showed in group 3 (p<0.05). 2. Microleakage in group 1 and group 3 was significantly lower than in group 2 at gingival margins (p<0.05). 3. Microleakage at gingival margins was greater than at occlusal margins in group 1 and group 2, but microleakage at occlusal margins was greater than at gingival margins in group 3 (p<0.05). 4. In group 1 and group 2, no gaps at occlusal margins showed. But gaps showed in group 3. Occlusal margins were free from a hybrid layer in all groups 5. The thickness of the marginal hybrid layers was 2.5~5 $\mu\textrm{m}$ thick in group 5 $\mu\textrm{m}$ thick in group 2 and 1.5 $\mu\textrm{m}$ thick in group 3. 6 There was no corelation between microleakage and thickness of marginal hybrid layer. In coclusion, the effect of dentin adhesives on microleakge in class V composite restorations was excellent when one-bottle adhesives were applied on enamel margin, and it was good when a self-etching adhesive was applied on dentinal margin. There was no corelation between microleakage and thickness of marginal hybrid layer.

EFFECT OF SELF-ETCHING PRIMER APPLICATION ON THE CHARACTERISTICS & STRENGTH OF DENTIN BONDING IN PRIMARY TOOTH (자가부식 프라이머의 처리가 유치의 상아질과 레진 간의 결합 형태와 강도에 미치는 효과)

  • Lee, Jun-Haeng;Kim, Yong-Kee;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.595-607
    • /
    • 1999
  • The purpose of this in vitro study was to evaluate the efficacy of self-etching primer which was developed to simplify the bonding procedures by measuring the shear bond strength and observing the interfacial morphology. 90 flat dentinal surfaces were prepared by grinding the buccal and lingual areas of caries-free human deciduous molars. After bonding of composite resin to sample surfaces according to the manufacturer's direction and thermocycling, shear bond strengths were measured using Universal testing machine(Instron). Another groups of specimens were treated by hydrochloric acid to secure the resin only and those tags were evaluated under SEM for their length and forms and the morphology of the bonding sites were also observed. The result as follows. 1. Group III showed higher shear bond strength than group I and II but no statistically significant difference was founded between group I and II(p>.05). 2. Adhesive failure was predominant in group II whereas dentin detachment was the main failure pattern in group I and III. 3. Relating long resin tags of $100-200{\mu}m$ were observed in samples of all groups under SEM. In group I, homogeneously long resin tags were arranged rather tight whereas rather loosely arranged resin tags of various length were found in group II. Lateral branching of resin tags was the characteristic finding observed in group III.

  • PDF

Recent Synthetic Trends of Ti3C2Tx MXene (Ti3C2Tx MXene 합성 최신 연구 동향)

  • Suin Shim;Kwang Se Lee;Chang-Ho Choi
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.372-378
    • /
    • 2024
  • MXene, a two-dimensional transition metal carbide, nitride, or carbonitride, possesses exceptionally thin and large surface areas while also exhibiting remarkable electrical and chemical properties. These properties have attracted considerable interest in the application of MXene, including energy storage devices, sensors, and catalysts. Since the discovery of MXene in 2011, a number of synthetic methods have been proposed. The synthesis of MXene can be mainly divided into two stages: an etching step and a delamination step. The type of terminations or surface defects are dependent on the synthetic method and have a significant impact on key properties such as electrical conductivity. Therefore, research on synthetic methods is essential for the industrialization of MXene. This review provides an overview of the various etching methods and delamination strategies employed in the synthesis of Ti3C2Tx MXene, including the commonly used hydrofluoric acid etching method and the fluorine-free method, which has recently emerged as an environmentally friendly alternative. We also address the latest research trends, challenges, and perspectives for the industrialization of MXene.trialization of MXene.

A variation of elastic modulus of very thin diamond-like carbon films with deposition condition (증착조건에 따른 극미세 다이아몬드상 카본 박막의 탄성률 변화거동)

  • 정진원;이광렬;은광용;고대홍
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.387-395
    • /
    • 2001
  • The elastic modulus and the structural evolution were examined with the film thickness in polymeric, hard, graphitic diamond-like carbon (DLC) films. The DLC films used in the present study were prepared by radio frequency plasma assisted chemical vapor deposition (r.f.-PACVD) from $C_6H_6\;and\;CH_4$ gas. Elastic modulus of very thin DLC film was measured by free overhang method. This method has an advantage over the other methods. Because the substrate was removed by etching technique, the measured value is not affected by the mechanical property of the substrate. The structural evolution was investigated by the G-peak position of the Raman spectrum. The polymeric and graphitic films exhibited the decreased elastic modulus with decreasing film thickness. In polymeric films, the reason was that more polymeric film had been deposited in the initial stage of the film growth and in graphitic film more graphic films which had been deposited in the initial stage decreased the elastic modulus. The G-peak position of the Raman spectrum confirmed this result. On the other hand, the hard film showed the constant elastic modulus regardless to the film thickness. The structural change was not observed in this range of the film thickness.

  • PDF

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.