• Title/Summary/Keyword: Etching resistance

Search Result 223, Processing Time 0.031 seconds

Gravure Halftone Dots by Laser Direct Patterning

  • Jeong Suh;Lee, Jae-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • Laser direct patterning of the coated photoresist (PMER-NSG31B) layer was studied to make halftone dots on the gravure printing roll. The selective laser hardening of the photoresist by Ar-ion laser(wavelength: 333.6∼363.8 nm) was controlled by the A/O modulator. The coating thickness in the range of 5∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines farmed under the laser power of 200∼260mW and irradiation time of 4.4∼6.6 $\mu$ sec/point were investigated after developing. The hardened width increased as the coating thickness increased. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line width of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

Structure & Mechanical Behavior of TiCN Thin Films by rf Plasma Deposition (RF Plasma법으로 증착된 TiCN박막의 구조 및 기계적 거동에 관한 연구)

  • Baeg, C.H.;Park, S.Y.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2000
  • The structure and mechanical properties of TiN and TiCN thin films deposited on STD61 steel substrates by the RF-sputtering methods has been studied by using XPS, XRD, micro-hardness tester, scratch tester, and wear-resistance tester. XPS results showed that the TiCN thin film formed with chemical bonding state. The TiN thin films grew with (111) orientation having the lowest strain energy by compressive stress, whereas the TiCN thin films grew with both (111) and (200) orientation, but (200) orientation having the lowest surface energy becomes dominant as carbon contents increase. The pre-etching treatment of substrate did not affect on the preferred orientation of thin films, but it played an important role in improving mechanical properties of thin films such as the hardness, adhesion and wear- resistance. Especially, the TiCN thin films showed the superior wear resistances due to high hardness and low friction coefficient compared with TiN thin films.

  • PDF

Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses

  • Choi, Jae Ho;Han, Yoon Soo;Lee, Sung Min;Park, Hyung Bin;Choi, Sung Churl;Kim, Hyeong Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.700-706
    • /
    • 2016
  • Etch rate, surface roughness and microstructure as plasma resistance were evaluated for six kinds of oxide glass with different compositions. Borosilicate glass (BS) was found to be etched at the highest etch rate and zinc aluminum phosphate glass (ZAP) showed a relatively lower etch rate than borosilicate. On the other hand, the etching rate of calcium aluminosilicate glass (CAS) was measured to be similar to that of sintered alumina while yttrium aluminosilicate glass (YAS) showed the lowest etch rate. Such different etch rates by mixture plasma as a function of glass compositions was dependent on whether or not fluoride compounds were formed on glass and sublimated in high vacuum. Especially, in view that $CaF_2$ and $YF_3$ with high sublimation points were formed on the surface of CAS and YAS glasses, both CAS and YAS glasses were considered to be a good candidate for protective coating materials on the damaged polycrystalline ceramics parts in semi-conductor and display processes.

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Effect of AlF3 addition to the plasma resistance behavior of YOF coating deposited by plasma-spraying method (플라즈마-스프레이법에 의해 코팅한 옥시불화이트륨(YOF) 증착층의 플라즈마 내식성에 미치는 불화알루미늄(AlF3) 첨가 효과)

  • Young-Ju Kim;Je Hong Park;Si Beom Yu;Seungwon Jeong;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.153-157
    • /
    • 2023
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we mixed AlF3 powder with the solid-state reacted yttrium oxyfluoride (YOF) in order to increase plasma-etching resistance of the plasma spray coated YOF layer. Effects of the mixing ratio of AlF3 with YOF powder on crystal structure, microstructure and chemical composition were investigated using XRD and FE-SEM. The plasma-etching ratios of the plasma-spray coated layers were calculated and correlation with AlF3 mixing ratio was analyzed.

Role of edge patterning and metal contact for extremely low contact resistance on graphene

  • Jo, Seo-Hyeon;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.294.2-294.2
    • /
    • 2016
  • Graphene, a sigle atomic layered structure of graphite, has drawn many scientific interests for attractive future electronics and optoelectronics beyond silicon-based technology because of its robust physical, optical, and electrical properties. But high metal-graphene contact resistance prevents the successful integration of high speed graphene devices and circuits, although pristine graphene is known to have a novel carrier transport property. Meanwhile, in the recently reported metal-graphene contact studies, there are many attempts to reduce the metal-graphene contact resistance, such as doping and one-dimensional edge contact. However, there is a lack of quantitative analysis of the edge contact scheme through variously designed patterns with different metal contact. We first investigate the effets of edge contact (metal-graphene interface) on the contact resistance in terms of edge pattern design through patterning (photolithography + plasma etching) and electral measurements. Where the contact resistance is determined using the transfer length method (TLM). Finally, we research the role of metal-kind (Palladium, Copper, and Tianium) on the contact resistance through the edge-contacted devices, eventually minimizing contact resistance down to approximately $23{\Omega}{\cdot}{\mu}m$ at room temperature (approximately $19{\Omega}{\cdot}{\mu}m$ at 100 K).

  • PDF

Comparison of plasma resistance between spray coating films and bulk of CaO-Al2O3-SiO2 glasses under CF4/O2/Ar plasma etching (CaO-Al2O3-SiO2 계 벌크 유리와 스프레이 코팅막의 CF4/O2/Ar 플라즈마 식각 시 내식성 비교)

  • Na, Hyein;Park, Jewon;Park, Jae-Hyuk;Kim, Dae-Gun;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.66-72
    • /
    • 2020
  • The difference of plasma resistance between the CAS glass bulk and coating films were compared. Plasma resistance was confirmed by analyzing the etch rate and the microstructure of the surface when the CAS glass bulk and the glass coating film were etched with CF4/O2/Ar plasma gas. CAS glass coating film was etched up to 25 times faster than the glass bulk. A statistically high correlation between the surface roughness and the etching rate of the coating film was derived, and thus, the high surface roughness of the coating film was determined to cause rapid etching. In addition, cristobalite crystals that has a low Ca content and a high Si content, was foamed on the glass coating film. Therefore, the CAS glass coating film is considered to have low plasma resistance compared to the glass bulk.

Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering (대향식 스퍼터링법으로 증착된 ITO 양극 위에 제작된 OLED 성능)

  • Yoon, Chul;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.199-204
    • /
    • 2008
  • Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.

Screening of spherical phosphors by electrophoretic deposition for full-color field emission display application

  • Kwon, Seung-Ho;Cho, sung-Hee;Yoo, Jae-Soo;Lee, Jong-Duk
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.79-84
    • /
    • 1999
  • the photolithographic patterning on an indium-tin oxide (ITO) glass and the electro-phoretic deposition were combined for preparing the screen of the full-color field emission display(FED). the patterns with a pixel of 400$\mu\textrm{m}$ on the ITO-glass were made by etching the ITO with well-prepared etchant consisting of HCL, H2O, and HNO3. Electrophoretic method was carried out in order to deposit each spherical red (R), green(G), and blue (B) phosphor on the patterned ITO-glass. The process parameters such as bias voltage, salt concentration, and deposition time were optimized to achieve clear boundaries. It was found that the etching process of ITO combined with electrophoretic method was cost-effective, provided distinct pattern, and even reduced process steps compared with conventional processes. The application of reverse bias to the dormant electrodes while depositing the phosphors on the stripe pattern was found to be very critical for preventing the cross-contamination of each phosphor in a pixel.

  • PDF

Fabrication of Superconducting Flux Flow Transistor using Plasma etching (플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터 제작)

  • 강형곤;임성훈;고석철;한윤봉;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.74-77
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : Cl$_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained r$\sub$m/ values were smaller than 0.1Ω at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below 0.2 Ω.

  • PDF