• Title/Summary/Keyword: Etching characteristics

Search Result 848, Processing Time 0.03 seconds

Reactive ion Etching Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100) 기판위에 성장된 3C-SiC의 RIE 특성)

  • Jung, Soo-Yong;Woo, Hyung-Soon;Jin, Dong-Woo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.892-895
    • /
    • 2003
  • This paper describes on RIE(Reactive Ion Etching) characteristics of 3C-SiC(Silicon Carbide) grown on Si(100) wafers. During RIE of 3C-SiC films in this work, $CHF_3$ gas is used to form of polymer as a side wall for excellent anisotropy etching. From this process, etch rates are obtained a $60{\sim}980{\AA}/min$ by various conditions such as $CHF_3$ gas flux, $O_2$ addition ratio, RF power and electrode distance. Also, approximately $40^{\circ}$ mesa structures are successfully formed at 100 mTorr $CHF_3$ gas flow ratio, 200 W RF power and 30 mm electrode distance. Moreover, vertical side wall is fabricated by anisotropy etching with 50% $O_2$ addition ratio and 25 mm electrode distance. Therefore, RIE of 3C-SiC films using $CHF_3$ could be applicable as fabrication process technology for high-temperature 3C-SiC MEMS applications.

  • PDF

Etching Characteristics of GST Thin Films using Inductively Coupled Plasma of Cl2-Ar Gas Mixtures (Cl2-Ar 혼합가스를 이용한 GST 박막의 유도결합 플라즈마 식각)

  • Min, Nam-Ki;Kim, Man-Su;Dmitriy, Shutov;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.846-851
    • /
    • 2007
  • In this work, the etching characteristics of $Ge_2Sb_2Te_5(GST)$ thin films were investigated using an inductively coupled plasma (ICP) of $Cl_2/Ar$ gas mixture. To analyze the etching mechanism, an optical emission spectroscopy (OES) and surface analysis using X-ray photoelectron spectroscopy (XPS) were carried out. The etch rate of the GST films decreased with decreasing Ar fraction. At the same time, high selective etch rate over $SiO_2$ films was obtained and the selectivity over photoresist films decreased with increasing the he fraction. From XPS results, we found that Te halides were formed at the etching surface and Te halides limited the etch rate of the GST films.

Dry Etching Characteristics of TiN Thin Films in BCl3-Based Plasma

  • Woo, Jong-Chang;Park, Jung-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.106-109
    • /
    • 2011
  • We investigated the etching characteristics of titanium nitride (TiN) thin film in $BCl_3$/Ar inductively coupled plasma. The etching parameters were the gas mixing ratio, radio frequency (RF) power, direct current (DC)-bias voltages and process pressures. The standard conditions were as follows: total flow rate = 20 sccm, RF power = 500 W, DC-bias voltage = -100 V, substrate temperature = $40^{\circ}C$, and process pressure = 15 mTorr. The maximum etch rate of TiN thin film and the selectivity of TiN to $Al_2O_3$ thin film were 54 nm/min and 0.79. The results of X-ray photoelectron spectroscopy showed no accumulation of etch byproducts from the etched surface of TiN thin film. The TiN film etch was dominated by the chemical etching with assistance by Ar sputtering in reactive ion etching mechanism, based on the experimental results.

Etching of Silicon Wafer Using Focused Argon lon Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각)

  • Cheong, Jae-Hoon;Lee, Cheon;Park, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF

High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications

  • Lee, Joon-Hoi;Lee, Wook-Jae;Choi, Man-Sub;Yi, Joon-Sin
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • This paper investigates the characteristics of a newly developed high density hollow cathode plasma(HCP) system and its application for the etching of silicon wafers. We used $SF_6$ and $O_2$ gases in the HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}cm^{-3}$ at a discharge current of 20 rna, Silicon etch rate of 1.3 ${\mu}m$/min was achieved with $SF_6/O_2$ plasma conditions of total gas pressure of 50 mTorr, gas flow rate of 40 seem, and RF power of200W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. We obtained field emitter tips size of less than 0.1 ${\mu}m$ without any photomask step as well as with a conventional photolithography. Our experimental results can be applied to various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this research, we studied silicon etching properties by using the hollow cathode plasma system.

  • PDF

The Etching Characteristics of the TaN Thin Films Using Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 TaN 박막의 건식 식각 특성)

  • Li, Chen;Joo, Young-Hee;Woo, Jong-Chang;Kim, Han-Soo;Choi, Kyung-Rok;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, we investigated the etching characteristics of the TaN thin films and the surface reaction of TaN thin films after etching process. The etching characteristics of the TaN thin films were carried out using inductively coupled plasma (ICP). The etch rate and the selectivity of TaN to $SiO_2$ and TaN to PR were measured by varying the gas mixing ratio, RF power, DC-bias voltage, and process pressure in CF-based plasma. The surface reaction of TaN thin films were determined by x-ray photoelectron spectroscopy (XPS).

ANALYSIS AND INTERPRETATION OF ELECTRIC CHARACTERISTICS OF DRY ETCHING PROCESS FOR THE TFT-LCD FABRICATION

  • Kwon, O-Dae;Kwon, Han-Bum;Yoo, Su-Jin;Kim, Jong-Keun;Jeon, Jae-Hong;Lee, Kang-Woong;Choe, Hee-Hwan;Seo, Jong-Hyun;Seong, Dae-Jin;Kim, Jung-Hyun;Hyeon, Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.922-925
    • /
    • 2007
  • In the usual dry etching process for the TFT-LCD fabrication, it is hard to monitor the basic plasma parameters such as density and temperature. However, the basic parameters are easily monitored during the dry etching process. We have simultaneously measured the electric characteristics and basic plasma parameters of the dry etching chamber during the process, analyzed them to interpret plasma parameters. For the Ar plasma discharge case, we could obtain the density and temperature from the electric characteristics using a simple simple sheath model.

  • PDF

A Study on the $SF_6$ Plasma Characteristic for the etching process (에칭 프로세스를 위한 $SF_{6}/O_2$ 플라즈마 특성에 관한연구)

  • Ha, Jang-Ho;Jun, Yong-Woo;Shin, Yong-Chul;Youn, Young-Dae;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2074-2076
    • /
    • 2000
  • In this paper, RFICP equipment is designed and manufactured with the aid of high frequency discharge to produce uniform plasma with high density and large diameter. And $SF_6$ gas is used to investigate plasma characteristics. The electron density and temperature, potential dependence of $SF_6$ plasma in accordance with its operating pressure, gas flux and input power are measured by the method of Langmuir probe. The etching characteristics of the plasma is researched in accordance with operating pressure, gas flux, input power to apply to Silicon Wafer which is used in the field of semiconductor process. The proposed RFICP equipment, in this paper, has relatively excellent etching characteristics, and is thought to be element of oxidization-sheath etching facility in semiconductor manufacturing process.

  • PDF

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene

  • Ji, Sang Hyun;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.

Influence of Surface Roughness on Friction and Wear Characteristics of SUS 321 for Hydraulic Cylinder Parts Application

  • Sung-Jun Lee;Yonghun Jang;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.244-249
    • /
    • 2023
  • This paper presents a comprehensive analysis of the impact of surface roughness on the friction and wear properties of SUS 321, an austenitic stainless steel variant produced using the laser powder bed fusion (LPBF) technique, which is a prevalent additive manufacturing method. After the LPBF fabrication, the specimens go a heat treatment process aimed at alleviating residual stress. Subsequently, they are polished extensively to achieve a refined and smooth surface. To deliberately introduce controlled variations in surface roughness, an etching process is employed. This multi-step method encompassed primary etching in a 3M hydrochloric acid solution, followed by secondary etching in a 35 wt% ferric chloride solution, with varying durations applied to different specimens. A comprehensive evaluation of the surface characteristics ensued, employing precise techniques such as surface roughness measurements and meticulous assessments of water droplet contact angles. Following the surface treatment procedures, a series of friction tests are performed to explore the tribological behavior of the etched specimens. This in-depth investigation reached its peak by revealing valuable insights. It clarified a strong correlation between intentionally altered surface roughness, achieved through etching processes, and the resulting tribological performance of LPBF-fabricated SUS 321 stainless steel. This significantly advances our grasp of material behavior in tribological applications.