DOI QR코드

DOI QR Code

Dry Etching Characteristics of TiN Thin Films in BCl3-Based Plasma

  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Park, Jung-Soo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2011.02.13
  • Accepted : 2011.04.14
  • Published : 2011.06.25

Abstract

We investigated the etching characteristics of titanium nitride (TiN) thin film in $BCl_3$/Ar inductively coupled plasma. The etching parameters were the gas mixing ratio, radio frequency (RF) power, direct current (DC)-bias voltages and process pressures. The standard conditions were as follows: total flow rate = 20 sccm, RF power = 500 W, DC-bias voltage = -100 V, substrate temperature = $40^{\circ}C$, and process pressure = 15 mTorr. The maximum etch rate of TiN thin film and the selectivity of TiN to $Al_2O_3$ thin film were 54 nm/min and 0.79. The results of X-ray photoelectron spectroscopy showed no accumulation of etch byproducts from the etched surface of TiN thin film. The TiN film etch was dominated by the chemical etching with assistance by Ar sputtering in reactive ion etching mechanism, based on the experimental results.

Keywords

References

  1. G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003) [DOI: 10.1063/1.1558223].
  2. S. A. Vitale, J. Kedzierski, and C. L. Keast, J. Vac. Sci. Technol. B 27, 2472 (2009) [DOI: 10.1116/1.3253533].
  3. S. Mukhopadhyay, K. Keunwoo, W. Xinlin, D. J. Frank, P. Oldiges, C. Ching-Te, and K. Roy, IEEE Electron Device Lett. 27, 284 (2006) [DOI: 10.1109/LED.2006.871540].
  4. S. H. Kim and J. G. Fossum, Solid-State Electron. 49, 595 (2005) [DOI: 10.1016/j.sse.2004.12.004].
  5. S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaudo, Solid-State Electron. 51, 239 (2007) [DOI: 10.1016/j.sse.2007.01.016].
  6. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, J. Vac. Sci. Technol. B 21, 2163 (2003) [DOI: 10.1116/1.1612517].
  7. S. Tabara, Jpn. J. Appl. Phys. 36, 2508 (1997) [DOI: 10.1143/JJAP.36.2508].
  8. C. B. Labelle, H. L. Maynard, and J. T. C. Lee, J. Vac. Sci. Technol. B 14, 2574 (1996) [DOI: 10.1116/1.588770].
  9. K. B. Jung, H. Cho, Y. B. Hahn, D. C. Hays, E. S. Lambers, Y. D. Park, T. Feng, J. R. Childress, and S. J. Pearton, J. Electrochem. Soc. 146, 1465 (1999) [DOI: 10.1149/1.1391787].
  10. X. Li, L. Ling, X. Hua, G. S. Oehrlein, Y. Wang, and H. M. Anderson, J. Vac. Sci. Technol. A 21, 1955 (2003) [DOI: 10.1116/1.1619420].
  11. X. Yang, D. P. Kim, G. H. Kim, J . C. Woo, D. S. Um, and C. I . Kim, Ferroelectrics 384, 39 (2009) [DOI : 10.1080/00150190902892741].
  12. D. P. Kim, X. Yang, J. C. Woo, D. S. Um, and C. I. Kim, J. Vac. Sci. Technol. A 27, 1320 (2009) [DOI: 10.1116/1.3244567].
  13. S. K. Rha, W. J. Lee, S. Y. Lee, Y. S. Hwang, Y. J. Lee, D. I. Kim, D. W. Kim, S. S. Chun, and C. O. Park, Thin Solid Films 320, 134 (1998) [DOI: 10.1016/s0040-6090(97)01077-8].
  14. W. S. Hwang, J. Chen, W. J. Yoo, and V. Bliznetsov, J. Vac. Sci. Technol. A 23, 964 (2005) [DOI: 10.1116/1.1927536].
  15. M. H. Shin, S. W. Na, N. E. Lee, and J. H. Ahn, Thin Solid Films 506-507, 230 (2006) [DOI: 10.1016/j.tsf.2005.08.019].
  16. E. Sungauer, E. Pargon, X. Mellhaoui, R. Ramos, G. Cunge, L. Vallier, O. Joubert, and T. Lill, J. Vac. Sci. Technol. B 25, 1640 (2007) [DOI: 10.1116/1.2781550].
  17. J. F. Marco, A. C. Agudelo, J. R. Gancedo, and D. Hanzel, Surf. Interface Anal. 27, 71 (1999) [DOI: 10.1002/(sici)1096-9918(199902)27:2<71::aid-sia469>3.0.co;2-g].