Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.143

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene  

Ji, Sang Hyun (Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji Sun (Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 143-149 More about this Journal
Abstract
To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.
Keywords
adsorption; electrospinning; solution process; VOCs; zeolite fibers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. J. Spivey, Ind. Eng. Chem. Res., 26, 2167 (1987).   DOI
2 P.-O. Larsson, A. Andersson, L. R. Wallenberg and B. Svensson, J. Catal., 163, 279 (1996).   DOI
3 K.-J. Kim and H.-G. Ahn, Micropor. Mesopor. Mat., 152, 78 (2012).   DOI
4 H. Zaitan, A. Korrir, T. Chafik and D. Bianchi, J. Hazard. Mater., 262, 365 (2013).   DOI
5 S. C. Shekar, K. Soni, R. Bunkar, M. Sharma, B. Singh, M. V. S. Suryanarayana and R. Vijayaraghavan, Appl. Catal., B, 103, 11 (2011).   DOI
6 M. Hussain, N. Russo and G. Saracco, Chem. Eng., 166, 138 (2011).   DOI
7 S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandet, A. Juwarkar and A. Vaiday, J. Environ. Manage., 91, 1039 (2010).   DOI
8 X. S. Zhao, Q. Ma and G. Q. Lu, Energ. Fuel., 12, 1051 (1998).   DOI
9 H. An, B. Feng and S. Su, Int. J. Greenhouse Gas Control., 5, 16 (2011).   DOI
10 S. Brosillon, M.-H. Manero and J.-N. Foussard, Environ. Sci. Technol., 35, 3571 (2001).   DOI
11 P. Navarri, D. Marchal and A. Ginestet, Filtr. Sep., 38, 33 (2001).   DOI
12 W. B. Li, J. X. Wang and H. Gong, Catal. Today, 148, 81 (2009).   DOI
13 S. H. Ji, J. H. Cho, Y. H. Jeong, J. D. Yun and J. S. Yun, Appl. Surf. Sci., 416, 178 (2017).   DOI
14 W. Wibowo, M. Rokhmat, K. Sutisna and M. Abdullah, Desalination, 409, 146 (2017).   DOI
15 J. H. C. Van Hooff and J. W. Roelofsen, Stud. Surf. Sci. Catal., 58, 241 (1990).