• Title/Summary/Keyword: Estimation of Activity Duration

Search Result 20, Processing Time 0.025 seconds

A Study on Optimal Duration Estimation for Construction Activity

  • Cho, Bit Na;Kim, Young Hwan;Kim, Min Seo;Jeong, Tae Woon;Kim, Chang Hak;Kang, Leen Seok
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.612-613
    • /
    • 2015
  • As a construction project is recently becoming large-scaled and complex, construction process plan and management for successful performance of a construction project has become more important. Especially a reasonable estimation plan of activity duration is required because the activity duration is directly related to the determination of the entire project duration and budget. However, the activity duration is used to estimate by the experience of a construction manager and past construction records. Furthermore, the prediction of activity duration is more difficult because there is some uncertainty caused by various influencing factors in a construction project. This study suggests an estimation model of construction activity duration using neural network theory for a more systematic and objective estimation of each activity duration. Because suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project. And it can be a more systematic estimation method of activity duration comparing to the estimation method by experience of project manager.

  • PDF

Development of Estimation Model of Construction Activity Duration Using Neural Network Theory (건설공사 공정별 작업기간 산정을 위한 신경망 기반 모형 구축)

  • Cho, Bit-Na;Kim, Hyeon-Seung;Kang, Leen-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3477-3483
    • /
    • 2015
  • A reasonable process for the activity duration estimation is required for the successful construction management because it directly affects the entire construction duration and budget. However, the activity duration is being generally estimated by the experience of the construction manager. This study suggests an estimation model of construction activity duration using neural network theory. This model estimates the activity duration by considering both the quantitative and qualitative elements, and the model is verified by a case study. Because the suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project.

Project Duration Estimation and Risk Analysis Using Intra-and Inter-Project Learning for Partially Repetitive Projects (부분적으로 반복되는 프로젝트를 위한 프로젝트 내$\cdot$외 학습을 이용한 프로젝트기간예측과 위험분석)

  • Cho, Sung-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.137-149
    • /
    • 2005
  • This study proposes a framework enhancing the accuracy of estimation for project duration by combining linear Bayesian updating scheme with the learning curve effect. Activities in a particular project might share resources in various forms and might be affected by risk factors such as weather Statistical dependence stemming from such resource or risk sharing might help us learn about the duration of upcoming activities in the Bayesian model. We illustrate, using a Monte Carlo simulation, that for partially repetitive projects a higher degree of statistical dependence among activity duration results in more variation in estimating the project duration in total, although more accurate forecasting Is achievable for the duration of an individual activity.

A Stochastic Simulation Model for Estimating Activity Duration of Super-tall Building Project

  • Minhyuk Jung;Hyun-soo Lea;Moonseo Park;Bogyeong Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.397-402
    • /
    • 2013
  • In super-tall building construction projects, schedule risk factors which vertically change and are not found in the low and middle-rise building construction influence duration of a project by vertical attribute; and it makes hard to estimate activity or overall duration of a construction project. However, the existing duration estimating methods, that are based on quantity and productivity assuming activities of the same work item have the same risk and duration regardless of operation space, are not able to consider the schedule risk factors which change by the altitude of operation space. Therefore, in order to advance accuracy of duration estimation of super-tall building projects, the degree of changes of these risk factors according to altitude should be analyzed and incorporated into a duration estimating method. This research proposes a simulation model using Monte Carlo method for estimating activity duration incorporating schedule risk factors by weather conditions in a super-tall building. The research process is as follows. Firstly, the schedule risk factors in super-tall building are identified through literature and expert reviews, and occurrence of non-working days at high altitude by weather condition is identified as one of the critical schedule risk factors. Secondly, a calculating method of the vertical distributions of the weather factors such as temperature and wind speed is analyzed through literature reviews. Then, a probability distribution of the weather factors is developed using the weather database of the past decade. Thirdly, a simulation model and algorithms for estimating non-working days and duration of each activity is developed using Monte-Carlo method. Finally, sensitivity analysis and a case study are carried out for the validation of the proposed model.

  • PDF

Model of Simultaneous Travel time and Activity Duration for worker with Transportation Panel Data

  • Kim Soon-Gwan
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.09a
    • /
    • pp.160-167
    • /
    • 1998
  • Recent world-wide interest in activity-based travel behavior modeling has generated an entirely new perspective on how the profession views the travel demand process. This paper seeks to further promote the case of activity-based travel behavior models by providing some empirical evidence of relationship between travel time and activity duration decision for worker with transportation panel data. The travel time from home to work and from work to home, without activity involvement, is estimated by the Ordinary Least Squares (OLS) method. And, the travel time to and from the selected activity and the activity duration are modeled simultaneously by the Three Stage Least Squares (3SLS) method due to the endogenous relationship between travel time and activity duration. Two kinds of models, OLS and 3SLS, include selectivity bias corrections in a discrete/continuous framework, because of the inter-relationship between the choice of activity type/travel mode (discrete) and the travel time/activity duration (continuous). Estimation is undertaken using a sample of over 1300 household two-day trip diaries collected from the same travelers in the Seattle area in 1989. The behavioral consequences of these models provide interesting and provocative findings that should be of value to transportation policy formulation and analysis.

  • PDF

Decision Support System for Project Duration Estimation Model (프로젝트기간 예측모델을 위한 의사결정 지원시스템)

  • 조성빈
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.369-374
    • /
    • 2000
  • Despite their tilde application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today due to a static view far prefect progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g. the expected project completion time as well as the probabilities of completing the project within talc due date and by a certain date. By Implementing such customized systems, project manager can be aware of changing project status more effectively and better revise resource allocation plans.

  • PDF

Decision Support System for Project Duration Estimation Model (프로젝트기간예측모델을 위한 의사결정지원시스템)

  • 조성빈
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • Despite their wide application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today, due to a static view for project progression. This study proposes a framework for estimation by loaming based on a Linear Bayesian approach. As a project Progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g., the expected project completion time as well as the probabilities of completing the project within the due bate and by a certain date. By implementing such customized system, project manager can be aware of changing project status more effectively and better revise resource allocation plans.

  • PDF

An Analysis of 3D Printing Activities for Vertical Structure of Small Building (소형건축물 수직골조 대상 3D 프린팅 액티비티 분석)

  • Park, Hyeong-Jin;Ju, Gi-Beom;Seo, Myeong-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.308-309
    • /
    • 2018
  • Construction automation is needed to improve construction productivity. 3D printing is a key technology of the 4th industrial revolution, and when applied to the construction field, the ripple effect is very large. In this paper, we propose a 3D printing method that can predict the 3D printing process and estimate the construction duration for each process. Through literature review and expert consultation, eight 3D printing activities for structure work were derived. Construction duration and cost estimation for each activity will be needed in the future research.

  • PDF

Approximate Estimating of Plant Construction Duration Using a Standard Schedule Model (초기 사업단계에서 표준공정모델을 이용한 가스 플랜트 공사의 개략적 공사기간 산정)

  • Moon, Sung-Woo;Park, Sang-Chun;Kwon, Ki-Nam
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.26-33
    • /
    • 2009
  • The required level of detail in scheduling depends on the stages in the construction life-cycle. The objective of this study is to provide a Standardized Schedule Model (SSM) with an aim to facilitate the estimating of construction duration in the planning stage. The SSM modularizes work items; establishes relations between preceding and succeeding activities; and calculates approximate construction duration. The estimated duration of the SSM was compared with the detailed duration from the commercial scheduling tool using actual work activities. The difference showed to be ranged between -3.1% and +15%, which demonstrates that the SSM can be feasibly applied to the approximate estimation of construction duration.

STOCHASTIC SCHEDULING CONSIDERING INTERDEPENDENT ACTIVITY DURATIONS

  • I-Tung Yang
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.791-795
    • /
    • 2005
  • A simulation model is proposed to evaluate the effect of correlations between activity durations on the overall project duration. The proposed model incorporates NORTA, a recent developed statistical method, into the simulation process to allow arbitrarily specified marginal distributions for activity durations and any desired correlation structure. The generality is of practical value when systematic data is not available and planners have to rely on arbitrary experts' estimation, which may involve a mixed situation when some activity durations are continuously distributed whereas others are discrete outcomes. The proposed model is validated by showing that the correlation coefficients of the simulation results are close to the originally specified ones. The simulation results are compared to two conventional approaches: PERT and simulation without correlation. The comparisons illustrate that the proposed model can provide important management information, which would otherwise be distorted due to the neglect of the correlations between activity durations.

  • PDF