• Title/Summary/Keyword: Error-correction code

Search Result 334, Processing Time 0.026 seconds

Error Rate Performance of FH/MFSK Signal with Diversity and Coding Technique in the Interference and Fading Environments (간섭과 페이딩 환경하에서 다이버시티와 부호화 기법을 이용하는 FH/MFSK 신호의 오율 특성)

  • 이문승;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1311-1319
    • /
    • 1992
  • In the partial-band interference and Rayleigh fading environments, the bit error probability equation of FH/MFSK signal has been derived and the error rate has been evaluated. And the results are shown in graphs and discussed. Here, to improve the error rate performance the repeated diversity and the error-correction coding techniques are adopted. The degree of improvement of error rate performance has been found out in diversity and coding techniques respectively. In diversity case, repetition number is taken as a parameter and in coding case, as the error-correction codes Hamming code, BCH code, and convolutional code are introduced. From the obtained results, we have known that the increase of the number of repetition in diversity technique has been brought a little improvement of performance but the coding technique considerable improvement and in particular, convolutional code is very effective. Therefore, coding technique is considered to be better than repeated diversity to cope with Rayleigh fading and partial-band interference.

  • PDF

Effect of Processing Gain on the Iterative Decoding for a Recursive Single Parity Check Product Code (재귀적 SPCPC에 반복적 복호법을 적용할 때 처리 이득이 성능에 미치는 영향)

  • Chon, Su-Won;Kim, Yong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.721-728
    • /
    • 2010
  • CAMC (constant amplitude multi-code) has a better performance of error correction in iterative decoding than SPCPC (single parity check product code). CAMC benefits from a processing gain since it belongs to a spread spectrum signal. We show that the processing gain enhances the performance of CAMC. Additional correction of bit errors is achieved in the de-spreading of iteratively decoded signal. If the number of errors which survived the iterative decoding is less than or equal to ($\sqrt{N}/2-1$), all of the bit errors are removed after the de-spreading. We also propose a stopping criterion in the iterative decoding, which is based on the histogram of EI (extrinsic information). The initial values of EI are randomly distributed, and then they converge to ($-E_{max}$) or ($+E_{max}$) over the iterations. The strength of the convergence reflects how successfully error correction process is performed. Experimental results show that the proposed method achieves a gain of 0.2 dB in Eb/No.

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

Optimum Convolutional Error Correction Codes for FQPSK-B Signals

  • Park, Hyung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.611-617
    • /
    • 2004
  • The optimum convolutional error correction codes for recently standardized Feher-patented quadrature phase-shift keying (FQPSK-B) modulation are proposed. We utilize the continuous phase modulation characteristics of FQPSK-B signals for calculating the minimum Euclidean distance of convolutional coded FQPSK-B signal. It is shown that the Euclidean distance between two FQPSK-B signals is proportional to the Hamming distance between two binary data sequence. Utilizing this characteristic, we show that the convolutional codes with optimum free Hamming distance is the optimum convolutional codes for FQPSK-B signals.

An Adaptive FEC Algorithm for Sensor Networks with High Propagation Errors (전파 오류가 높은 센서 네트워크를 위한 적응적 FEC 알고리즘)

  • 안종석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.755-763
    • /
    • 2003
  • To improve performance over noisy wireless channels, mobile wireless networks employ forward error correction(FEC) techniques. The performance of static FEC algorithms, however, degrades by poorly matching the overhead of their correction code to the degree of the fluctuating underlying channel error. This paper proposes an adaptive FEC technique called FECA(FEC-level Adaptation), which dynamically tunes FEC strength to the currently estimated channel error rate at the data link layer. FECA is suitable for wireless networks whose error rate is high and slowly changing compared to the round-trip time between two communicating nodes. One such example network would be a sensor network in which the average bit error rate is higher than $10^{-6}$ and the detected error rate at one time lasts a few hundred milliseconds on average. Our experiments show that FECA performs 15% in simulations with theoretically modeled wireless channels and in trace-driven simulations based on the data collected from real sensor networks better than any other static FEC algorithms.

Reed Solomon Encoding System of 4-state Bar Code for Automatic Processing in Mail Items (우편물 자동처리를 위한 4-state 바코드 Reed Solomon 인코딩 시스템)

  • 박문성;송재관;황재각;남윤석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.47-50
    • /
    • 2000
  • Recently many efforts on the development of automatic processing system for delivery sequence sorting have been performed in ETRI , which requires the use of postal 4-state bar code system to encode delivery points. The 4-state bar code called postal 4-state bar code for high speed processing that has been specifically designed for information processing of logistics and automatic processing of the mail items. This paper describes a method of Reed-Solomon encoding for creating error correction codeword of 4-state bar code.

  • PDF

Performance of COFDM in Underwater Acoustic Channel with Frequency Selective Fading (주파수 선택적 페이딩을 갖는 수중 음향 채널에서 COFDM의 성능)

  • Seo, Chulwon;Park, Jihyun;Park, Kyu-Chil;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.377-384
    • /
    • 2013
  • In this paper, performance of COFDM (Coded Orthogonal Frequency Division Multiplexing) which is OFDM with a forward error correction code, is studied in frequency selective fading underwater acoustic communication channel. The OFDM is a multiplexing technique resistant to frequency selective multipath channel. In OFDM, a broadband information signal is transformed into several narrow band signals and transmits narrow band signals whose bandwidths are less than the channel coherence bandwidth. However, its performance is degraded in a specific narrow band signal due to its deep fading by multipath. To mitigate this degradation, COFDM which is OFDM with convolution code as a forward error correction code, is evaluated. The performance of COFDM is found to be better than that of OFDM in multipath channel.