Effect of Processing Gain on the Iterative Decoding for a Recursive Single Parity Check Product Code

재귀적 SPCPC에 반복적 복호법을 적용할 때 처리 이득이 성능에 미치는 영향

  • 전수원 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 김용철 (서울시립대학교 전자전기컴퓨터공학부)
  • Received : 2010.06.07
  • Accepted : 2010.08.23
  • Published : 2010.09.30

Abstract

CAMC (constant amplitude multi-code) has a better performance of error correction in iterative decoding than SPCPC (single parity check product code). CAMC benefits from a processing gain since it belongs to a spread spectrum signal. We show that the processing gain enhances the performance of CAMC. Additional correction of bit errors is achieved in the de-spreading of iteratively decoded signal. If the number of errors which survived the iterative decoding is less than or equal to ($\sqrt{N}/2-1$), all of the bit errors are removed after the de-spreading. We also propose a stopping criterion in the iterative decoding, which is based on the histogram of EI (extrinsic information). The initial values of EI are randomly distributed, and then they converge to ($-E_{max}$) or ($+E_{max}$) over the iterations. The strength of the convergence reflects how successfully error correction process is performed. Experimental results show that the proposed method achieves a gain of 0.2 dB in Eb/No.

재귀적 구조의 SPCPC (single parity check product code)인 CAMC (constant amplitude multi-code) 는 반복적 복호를 행할 때 SPCPC에 비하여 오류 정정 성능이 우수하다. 본 논문에서는 대역확산 신호인 CAMC의 처리 이득이 성능 향상에 미치는 영향을 분석한다. 일반적인 곱 부호에서는 반복적 복호로 오류 정정 과정이 종료되지만, CAMC 는 반복적 복호 후의 역확산 과정에서 추가적으로 오류가 정정된다. 잔존하는 비트 오류의 수가 ($\sqrt{N}/2-1$)개 이하인 경우에는 (N은 코드워드의 길이), 역확산 과정에서 그 오류들은 모두 정정된다. 반복적 복호에서 EI (extrinsic information)의 분포 형태를 관찰한 결과, 초기의 EI 분포는 대체로 랜덤하나, 몇 회의 iteration 후에는 ($-E_{max}$) 혹은 ($+E_{max}$)의 이진 값으로 수렴한다. EI의 분포가 오류 정정의 진행 사항을 반영하는 점을 이용하는 iteration 제어 방법을 실험한 결과 Eb/No 에서 약 0.2 dB의 이득을 얻었다.

Keywords

References

  1. D. Rankin and T. Guliver, "Single parity check product codes."IEEE Trans. Comm., vol.49, no.8, pp.1354-1362, Aug. 2001. https://doi.org/10.1109/26.939851
  2. C. Berrou and A. Glavieux, "Near Optimum Error Correction Correcting Coding and Decodion : Tubo-Coding," IEEE Trans. On Commumications, Vol.44, No.10, pp.1261-1271, Ocy.1996. https://doi.org/10.1109/26.539767
  3. J. Hagenauer, E. Offer and L. Papke, "Iterative decoding of binary block and convolutional codes," IEEE Trans. Inform. Theory, Vol.42, pp.429-445, Mar. 1974
  4. Y. Kim, "Recursive generation of constant amplitude multi-code DSCDMA signal," IEE Electronics Letters, Vol.39, No.25, pp.1782-1783, Dec. 2003. https://doi.org/10.1049/el:20031148
  5. Y. Kim, "Constant amplitude multi-code CDMA with built-in-single parity check product code," IEEE Communications Letters, Vol. 10, No.1, pp.4-6, Jan. 2006. https://doi.org/10.1109/LCOMM.2006.1576551
  6. G. Caire, G. Taricco and G. Battail, "A Weight distribution and performance of the interated product of single-parity-check codes," Proceed. of IEEE GLOBECOM, pp.206-211, Dec. 1994.
  7. E. Biglieri and V. Volski, "Approximately Gaussian weight distribution of the iterated product of single-parity-check codes," IEE Electronice Letters, Vol.30, No.12, pp.923-924, Jun. 1994. https://doi.org/10.1049/el:19940659
  8. D. Yue and E, Yang, "Aymptotically Gaussian weight distribution and performance of multicomponent turbo block codes and product codes,"IEEE Trans. on Comm, Vol.52, No. 5, pp.728-736, May, 2004. https://doi.org/10.1109/TCOMM.2004.826250
  9. G. Battail, "A conceptual framework for understanding turbo codes,"IEEE J. Selected Areas Comm., Vol16, No.2 pp.245-254, Feb. 1998. https://doi.org/10.1109/49.661112
  10. I. Park, B. Kim, and Y.Kim, "Processing Gain and Fixed Weights of a Recursive Single Parity Check Product Code," Information Journal, Vol.12, No.4, pp.923-932, Jul. 2009.
  11. S. Lin and D. Costello, "Error control coding," 2nd ed. Pearson Prentice Hall, 2004.