• Title/Summary/Keyword: Error amplifier

Search Result 311, Processing Time 0.019 seconds

A Study of Low-Voltage Low-Power Bipolar Linear Transconductor and Its Application to OTA (저전압 저전력 바이폴라 선형 트랜스컨덕터와 이를 이용한 OTA에 관한 연구)

  • Shin, Hee-Jong;Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.40-48
    • /
    • 2000
  • 1A novel bipolar linear transconductor and its application to operational transconductance amplifier(OTA) for low-voltage low-power signal processing is proposed. The transconductor consists of a npn differential-pair with emitter degeneration resistor and a pnp differential-pair connected to the npn differential-pair in cascade. The bias current of the pnp differential-pair is used with the output current of the npn differential-pair for wide linearity and temperature stability. The OTA consists of the linear transconductor and a translinear current cell followed by three current mirrors. The proposed transconductor has superior linearity and low-voltage low-power characteristics when compared with the conventional transconductor. The experimental results show that the transconductor with transconductance of 50 ${\mu}S$ has a linearity error of less than ${\pm}$0.06% over an input voltage range from -2V to +2V at supply voltage ${\pm}$3V. Power dissipation of the transconductor was 2.44 mW. A prototype OTA with a transconductance of 25 ${\mu}S$ has been built with bipolar transistor array. The linearity of the OTA was same as the proposed transconductor. The OTA circuit also exhibits a transconductance that is linearly dependent on a bias current varying over four decades with a sensitivity of 0.5 S/A.

  • PDF

Design of 4-Bit TDL(True-Time Delay Line) for Elimination of Beam-Squint in Wide Band Phased-Array Antenna (광대역 위상 배열 안테나의 빔 편이(Beam-Squint) 현상 제거를 위한 4-Bit 시간 지연기 설계)

  • Kim, Sang-Keun;Chong, Min-Kil;Kim, Su-Bum;Na, Hyung-Gi;Kim, Se-Young;Sung, Jin-Bong;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1061-1070
    • /
    • 2009
  • In this paper, we have designed TDL(True-time Delay Line) for eliminating beam-squint occurring in active phased array antenna with large electrical size operated in wide bandwidth, and have tested its electrical performance. The proposed TDL device is composed of 4-bit microstrip delay line structure and MMIC amplifier for compensation of the delay-line loss. The measured results of gain and phase versus delay state satisfy the electrical requirements, also P1dB output power and noise figure meet the requirement. To verify the performance of fabricated TDL, we have simulated the beam patterns of wide-band active phased array antenna using the measured results and have certified the beam pattern compensation performance. As a result of simulated beam pattern compensation with respect to the 675.8 mm size antenna which is operated in X-band, 800 MHz bandwidth, we have reduced the beam squint error of ${\pm}1^{\circ}$ with ${\pm}0.1^{\circ}$. So this TDL module is able to be applied to active phase array antenna system.

Design of a PWM DC-DC Boost Converter IC for Mobile Phone Flash (휴대전화 플래시를 위한 PWM 전류모드 DC-DC converter 설계)

  • Jung, Jin-Woo;Heo, Yun-Seok;Park, Yong-Su;Kim, Nam-Tae;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2747-2753
    • /
    • 2011
  • In this paper, a PWM current-mode DC-DC boost converter for mobile phone flash application has been proposed. The converter which is operated with 5 Mhz high switching frequency is capable of reducing mounting area of passive devices such as inductor and capacitor, consequently is suitable for compact mobile phones. This boost converter consists of a power stage and a control block. Circuit elements of the power stage are inductor, output capacitor, MOS transistors and feedback resistors. Meanwhile, the control block consists of pulse width modulator, error amplifier, oscillator etc. Proposed boost converter has been designed and verified in a $0.5\;{\mu}m$ 1-poly 2-metal CMOS process technology. Simulation results show that the output voltage is 4.26 V in 3.7 V input voltage, output current 100 mA which is larger than 25 ~ 50 mA in conventional 500 Khz driven converter when the duty ratio is 0.15.

A Study on the Improved Parity Check Receiver for the Extended m-sequence Based Multi-code Spread Spectrum System with Code Set Partitioning and Constant Amplitude Precoding (코드집합 분할 방식의 확장 m-시퀀스 기반 정진폭 멀티코드 대역확산 통신 시스템을 위한 개선된 패리티 검사 기반 수신기에 관한 연구)

  • Han, Jun-Sang;Kim, Dong-Joo;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.1-11
    • /
    • 2012
  • The multi-code spread spectrum communication system, which spreads data bit stream by multiplexing orthogonal codes, can transmit data in high rate. However it needs the high-cost good linear amplifier because of the multi-level output signal. In order to overcome this drawback several systems making the amplitude of output signal constant with Walsh codes have been proposed. Recently constant amplitude pre-coded multi-code spread spectrum systems using extended m-sequence have been proposed. In this paper we consider an extended m-sequence based constant amplitude multi-code spread spectrum system with code set partitioning. By grouping the orthogonal codes into 4 subsets, not only is the computational complexity of the transceiver reduced but BER performance also improves. It has been shown that parity checking on four detected codes at the receiver can correct code detection error and result in BER performance enhancement. In this paper we propose a improved parity check receiver. We carried out computer simulation to verify feasibility of the proposed algorithm.

Highly Efficient High Power Hybrid EER Transmitter for IEEE 802.16e Mobile WiMAX Application (IEEE 802.16e Mobile WiMAX용 고효율 고출력 하이브리드 포락선 제거 및 복원 전력 송신기)

  • Kim, Il-Du;Moon, Jung-Hwan;Kim, Jang-Heon;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.854-861
    • /
    • 2008
  • We have described a high power hybrid envelope elimination and restoration(H-EER) transmitter for IEEE 802.16e Mobile World Interoperability for Microwave Access(WiMAX) using an efficiency optimized power amplifier(PA). The PA has been designed to have maximum PAE at the important power generation $V_{ds}$, region using Nitronex 100-W PEP GaN HEMT. For the high power application, H-EER transmitter should be considered the regenerative oscillation problem due to the PA's bias fluctuation effect and bias modulator stability issue. Therefore, the bias modulator for H-EER transmitter has been designed to suppress the regenerative oscillation. For the interlock experiment, the bias modulator has been built with the efficiency of 72% and peak output voltage of 30 V for the envelope signal with a PAPR of 8.5 dB. The H-EER transmitter for WiMAX application has been achieved a high PAE characteristic, 38.8 % at an output power of 41.25 dBm. By using digital predistortion(DPD) technique, the Relative Constellation Error (RCE) has been satisfied the specification of -34.5 dB. This is the first work at 2.655 GHz high power H-EER transmitter for WiMAX application.

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Three Level Buck Converter Utilizing Multi-bit Flying Capacitor Voltage Control (멀티비트 플라잉 커패시터의 전압제어를 이용한 3-레벨 벅 변환기)

  • So, Jin-Woo;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1006-1011
    • /
    • 2018
  • This paper proposes a three level buck converter utilizing multi-bit flying capacitor voltage control. The conventional three-level buck converter can not control the flying capacitor voltage, so that the operation is unstable or the circuit for controlling the flying capacitor voltage can not be applied to the PWM mode. Also when the load current is increased, an error occurs in the inductor voltage. The proposed structure can control the flying capacitor voltage in PWM mode by using differential difference amplifier and common mode feedback circuit. In addition, this paper proposes a 3bit flying capacitor voltage control circuit to optimize the operation of the three level buck converter depending on the load current, and a triangular wave generation circuit using the schmitt trigger circuit. The proposed 3-level buck converter is designed in $0.18{\mu}m$ CMOS process and has an input voltage range of 2.7V~3.6V and an output voltage range of 0.7V~2.4V. The operating frequency is 2MHz, the load current range is 30mA to 500mA, and the output voltage ripple is measured up to 32.5mV. The measurement results show a maximum power conversion efficiency of 85% at a load current of 130 mA.

Design of Cold-junction Compensation and Disconnection Detection Circuits of Various Thermocouples(TC) and Implementation of Multi-channel Interfaces using Them (다양한 열전쌍(TC)의 냉점보상과 단선감지 회로설계 및 이를 이용한 다채널 인터페이스 구현)

  • Hyeong-Woo Cha
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • Cold-junction correction(CJC) and disconnection detection circuit design of various thermocouples(TC) and multi-channel TC interface circuit using them were designed. The CJC and disconnection detection circuit consists of a CJC semiconductor device, an instrumentation amplifier(IA), two resistors and a diode for disconnection detection. Based on the basic circuit, a multi-channel interface circuit was also implemented. The CJC was implemented using compensation semiconductor and IA, and disconnection detection was detected by using two resistor and a diode so that IA input voltage became -0.42V. As a result of the experiment using R-type TC, the error of the designed circuit was reduced from 0.14mV to 3㎶ after CJC in the temperature range of 0℃ to 1400℃. In addition, it was confirmed that the output voltage of IA was saturated from 88mV to -14.2V when TC was disconnected from normal. The output voltage of the designed circuit was 0V to 10V in the temperature range of 0℃ to 1400℃. The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel. The implemented multi-channel interface has a feature that can be applied equally to E, J, K, T, R, and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.