• Title/Summary/Keyword: Error Sources

Search Result 611, Processing Time 0.028 seconds

A Study on Minimising the Errors on the Boundary Conditions when Using an Equivalent Source Technique for a Modelling of Sound Field inside an Enclosure (등가소스법을 이용한 공간 내의 음장 모델링에서 경계면 조건 오차의 최소화에 관한 연구)

  • Baek, Kwang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.581-586
    • /
    • 2000
  • The equivalent source method is used to calculate the internal pressure field for an enclosure which can have arbitrary boundary conditions and may include internal objects which scatter the sound. Some of the equivalent positions are chosen to be the same as the first order images of the source inside the enclosure, some are positioned on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. The convergence of this method is checked by evaluating the velocity error at a larger number of monitoring positions. Example results are presented for various numbers of sources and evaluation points. The results showed that in general the more equivalent sources increased the accuracy of the sound field predictions but the accuracy is not too much sensitive to the numbers of evaluation points.

  • PDF

Thermopile Radiometer Calibration Using Reference Instrument (표준준기에 의한 일사계 교정)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • The main purpose of the calibration procedure is to perform a one to one comparison of the reference pyranometer and the test pyranometer. In order to achieve this, both pyranometers need to be exposed to exactly the same irradiance, under the same circumstances. There are a number of error sources that could result in a wrong measurement. Most importantly Lamp instability, pyranometer offsets, thermal offsets of junctions, voltmeter offset, voltmeter instability, reference pyranometer instability, tilting of the pyranometers and differences in sensor height. Another sun-disc calibration procedure compares the computed vertical component of the direct irradiance as measured by a pyranometer with that measured by the pyranometer to be calibrated. Readings are taken with the levelled pyranometer on a clear day. Firstly the global irradiance and then the diffuse component are measured. Simultaneously measurement of direct irradiance is made with the pyrheliometer. The ways of performing the calibration and the subsequent calculation have been chosen such that the effect all these error sources has been eliminated as much as possible.

  • PDF

A Study on the Test Workpiece for Accuracy Evaluation of 5-Axis Machine Tool (5축 공작기계 정밀도 평가를 위한 표준 공작물에 관한 연구)

  • Youn, Jae-Woong;Kim, Ki-Hwan;Park, Jong Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Recently, a demand for precision 5-axis machine tools is significantly increasing, and the maintenance of machine tool accuracy becomes more important. it is very difficult to evaluate to accuracy of 5-axis M/C in the production site since it needs expensive measuring equipment and skilled engineer. On the other hand, evaluation items of 5-axis M/C are not systematically organized in the existing KS and ISO standards. In this study, the evaluation items for 5-axis M/C were derived systematically and a test workpiece was developed to evaluate the machine tool accuracy more easily. The error sources of machine tool can be estimated by machining and measuring of the test workpiece. The correlation between the machine tool accuracy and the accuracy of machined test workpiece was analyzed. As a result, the accuracy of machined test workpiece represented the accuracy of machine tool and the error sources very effectively.

Inter-relationships between performance shaping factors for human reliability analysis of nuclear power plants

  • Park, Jooyoung;Jung, Wondea;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • Performance shaping factors (PSFs) in a human reliability analysis (HRA) are one that may influence human performance in a task. Most currently applicable HRA methods for nuclear power plants (NPPs) use PSFs to highlight human error contributors and to adjust basic human error probabilities (HEPs) that assume nominal conditions of NPPs. Thus far, the effects of PSFs have been treated independently. However, many studies in the fields of psychology and human factors revealed that there may be relationships between PSFs. Therefore, the inter-relationships between PSFs need to be studied to better reflect their effects on operator errors. This study investigates these inter-relationships using two data sources and also suggests a context-based approach to treat the inter-relationships between PSFs. Correlation and factor analyses are performed to investigate the relationship between PSFs. The data sources are event reports of unexpected reactor trips in Korea and an experiment conducted in a simulator featuring a digital control room. Thereafter, context-based approaches based on the result of factor analysis are suggested and the feasibility of the grouped PSFs being treated as a new factor to estimate HEPs is examined using the experimental data.

Study of an Estimation Method of Thrust Measurement Uncertainty for the Solid Rocket Motors (고체 추진기관의 추력측정불확도 추정 방법 연구)

  • Lee, Kyu Joon;Kwon, Younghwa;Lee, Young Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • This study deals an estimation method of thrust measurement uncertainty in solid rocket motors. Guidelines of the force measurement uncertainty estimation have been provided by ISO, domestic and international organizations. However, all of them are described by focusing on the force calibration machines and force transducers with a conceptually-driven way. Thus the guidelines cannot be directly applicable to uncertainty estimation of calibration equation and its linear approximation, which are critical error sources in the thrust measurement. In this paper, the equations taking into account effects of both error sources are derived based on fundamental concepts of measurement uncertainty. These are applied to the real thrust measurement system where a relatively simple estimation method for the thrust measurement uncertainty is proposed.

Error Analysis and Modeling of Airborne LIDAR System (항공라이다시스템의 오차분석 및 모델링)

  • Yoo Byoung-Min;Lee Im-Pyeong;Kim Seong-Joon;Kang In-Ku
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.199-204
    • /
    • 2006
  • Airborne LIDAR systems have been increasingly used for various applications as an effective surveying mean that can be complementary or alternative to the traditional one based on aerial photos. A LIDAR system is a multi-sensor system consisting of GPS, INS, and a laser scanner and hence the errors associated with the LIDAR data can be significantly affected by not only the errors associated with each individual sensor but also the errors involved in combining these sensors. The analysis about these errors have been performed by some researchers but yet insufficient so that the results can be critically contributed to performing accurate calibration of LIDAR data. In this study, we thus analyze these error sources, derive their mathematical models and perform the sensitivity analysis to assess how significantly each error affects the LIDAR data. The results from this sensitivity analysis in particular can be effectively used to determine the main parameters modelling the systematic errors associated with the LIDAR data for their calibration.

  • PDF

HRTF-field reproduction for robust virtual source imaging (머리 전달 함수장 재현을 통한 광대역 입체 음향 구현)

  • Choi, Joung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.997-1004
    • /
    • 2007
  • A hybrid technique that combines the advantages of binaural reproduction and sound field reproduction technique is proposed. The concept of HRTF-field, which is defined as the set of HRTFs corresponding to the various head dislocations, enables us to realize virtual source imaging over a wide area. Conventional $2{\times}2$ definition is redefined as a MIMO system composed of multiple control sources and multiple head locations, and HRTF variations corresponding to various head movement are quantified. Through the direct control of HRTF-field, reproduction error induced by head dislocation can be minimized in least-square-error sense, and consequential disturbances on the virtual source image can be reduced within a selected area. Simple lateralization examples are investigated, and the reproduction error of the proposed technique is compared to that of Higher-order Ambisonics.

  • PDF

A Study on Development of Railway Reducer for Low Noise/Vibration (소음/진동을 고려한 철도 감속기 개발에 대한 연구)

  • 이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

A Study on Course Correction Performance Expectation & Algorithm Implementation of 1D CCM (1D CCM 탄도수정 성능예측 및 알고리즘 구현 연구)

  • Kim, Ki-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.5-13
    • /
    • 2007
  • The trajectory of an current artillery munition is subject to a variety of different error sources resulting in more or less big deviation from the nominal predicted flight path. The 1D CCM(Course Correction Munition) has appeared to solve this problem and the mechanism of 1D CCM is a simple and low cost one using the influence of drag to range behavior of an artillery munition. In the paper 1D CCM concept has been simulated using wind tunnel experiment results of the specified Korean munition with CCF(Course Correction Fuze) and calculated the performance of its rang error reduction. From the simulated results it can be numerically explained that the possibility of adaptation of 1D CCM concept to Korean artillery munitions.

Co60 Gamma-Ray Effects on the DAC-7512E 12-Bit Serial Digital to Analog Converter for Space Power Applications

  • Shin, Goo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2065-2069
    • /
    • 2014
  • The DAC-7512E is a 12-bit digital to analog converter that is low power and a single package with internal buffers. The DAC-7512E takes up minimal PCB area for applications of space power electronics design. The spacecraft mass is a crucial point considering spacecraft launch into space. Therefore, we have performed a TID test for the DAC-7512E 12-bit serial input digital to analog converter to reduce the spacecraft mass by using a low-level Gamma-ray irradiator with $Co^{60}$ gamma-ray sources. The irradiation with $Co^{60}$ gamma-rays was carried out at doses from 0 krad to 100 krad to check the error status of the device in terms of current, voltage and bit error status during conversion. The DAC-7512E 12-bit serial digital to analog converter should work properly from 0 krad to 30 krad without any error.