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Performance shaping factors (PSFs) in a human reliability analysis (HRA) are one that may influence
human performance in a task. Most currently applicable HRA methods for nuclear power plants (NPPs)
use PSFs to highlight human error contributors and to adjust basic human error probabilities (HEPs) that
assume nominal conditions of NPPs. Thus far, the effects of PSFs have been treated independently.
However, many studies in the fields of psychology and human factors revealed that there may be re-
lationships between PSFs. Therefore, the inter-relationships between PSFs need to be studied to better
reflect their effects on operator errors. This study investigates these inter-relationships using two data
sources and also suggests a context-based approach to treat the inter-relationships between PSFs. Cor-
relation and factor analyses are performed to investigate the relationship between PSFs. The data sources
are event reports of unexpected reactor trips in Korea and an experiment conducted in a simulator
featuring a digital control room. Thereafter, context-based approaches based on the result of factor
analysis are suggested and the feasibility of the grouped PSFs being treated as a new factor to estimate
HEPs is examined using the experimental data.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A performance shaping factor (PSF) is defined as a variable that
may affect human performance in a human reliability analysis
(HRA) [1,2]. Most currently applicable HRA methods for nuclear
power plants (NPPs) use PSFs to highlight human error contributors
and adjust basic human error probabilities (HEPs) that assume
nominal conditions in NPPs [3,4]. PSFs that are generally adopted in
HRA methods include experience, complexity, stress, adequacy of
procedure, human—system interface, and workload. They are also
called by different terminologies depending on the HRA methods,
such as performance influencing factors (PIFs) in Holistic Decision
Tree (HDT) [5], performance affecting factors (PAFs) in Cognitive
Reliability Assessment Technique (CREATE) [6], error producing
conditions (EPCs) in Human Error Assessment and Reduction
Method (HEART) [7], or common performance conditions (CPCs) in
Cognitive Reliability and Error Analysis Method (CREAM) [8].

There is sufficient evidence in the fields of psychology and
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human factors to indicate that there exists inter-relationship be-
tween PSFs. The term of inter-relationship comprehensively in-
cludes all the possible interactions between the states of the PSFs
and between the influences of the PSFs on human performances,
such as correlation, dependency, overlapping, or combinational
effects with the causal relations, i.e., the direction of influence. First,
Park and Jung showed that the task complexity of emergency
operating procedures has a relationship with the operator's work-
load in NPPs [9]. Second, the relationship between experience and
workload has been reported in various areas: for example, in
driving [10], aviation [11], and NPPs [12]. However, most HRA
methods treat PSFs independently, although they already recog-
nized that the PSFs undoubtedly contain some overlap and are thus
non-orthogonal [13]. If a HRA ignores the inter-relationships of
PSFs, it is possible that HEPs may be over- or under-estimated. For
example, when a complex task imposes a high workload on oper-
ators, separate consideration of the task complexity and workload
may double-count the effect of complexity and lead to the over-
estimation of HEPs or vice versa. However, most HRA methods treat
PSFs independently and generally do not consider this combined
effect of PSFs on human performance in the estimation of HEPs.
Recent interest in the inter-relationships of PSFs has been
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increasing in the HRA field. A few approaches deal with the mutual
dependency between PSFs in a systematic way, such as CREAM [8],
Standardized Plant Analysis Risk-HRA (SPAR-H) [13], and Informa-
tion, Decision, and Action in Crew context (IDAC) [14]. CREAM de-
scribes how PSFs affect each other in a qualitative way [8], whereas
IDAC tries to analytically describe the mutual relationships among
the states of PSFs and is a very complex application that requires a
great deal of effort by the analyst [14]. Boring [15] introduced a
statistical correlation between PSFs and discussed the proper
number of PSFs that should be considered by HRAs. Groth [16]
performed correlation and factor analyses on PSF data and found
four groupings to be the best fit for the data. De Ambroggi and
Trucco [17] suggested a systematic approach for modeling and
assessing dependent PSFs using the analytic network process,
based on expert judgments. Although a few studies suggested a
quantitative relationship between PSFs, they did not provide pro-
cedural guidance on using it to estimate HEP. In addition, a more
objective guide needs to be developed so that analysts can handle
inter-relationship between PSFs.

This study aims to investigate the inter-relationship between
PSFs using two data sources and suggest context-based approaches
based on the result of a factor analysis. First, this study analyzes the
correlation between PSFs in NPPs. The data sources used are event
reports for unexpected reactor trips in Korea from the Operational
Information System (OPIS) database and an experiment conducted
in a simulator featuring a digital control room. Correlation and
factor analyses were performed to investigate the relationship be-
tween PSFs and thus, perform PSF grouping. A few groups of PSFs
were identified from the factor analysis. Thereafter, context-based
approaches based on the result of a factor analysis are suggested
and the feasibility of the grouped PSFs being treated as a new factor
to estimate HEPs is examined using the experimental data.

2. Review of current techniques: modelling inter-
relationships among PSFs

2.1. Application of PSFs in HRA methods

Most HRA methods select PSFs that are the most relevant to and
influential in the task analyzed, and then calculate HEPs by
consolidating the respective effects of PSFs through simple multi-
plication or addition. Table 1 shows how HEPs are calculated in
popular HRA methods. In the Technique for Human Error Rate
Prediction (THERP) [1] and Korea standard HRA [18], HEPs of
diagnosis and execution are calculated using the product of basic
HEPs and PSF multipliers, and then these are summed for the final
HEPs, as shown in Egs. (1) and (2), respectively. In the Success
Likelihood Index Method using the Multi-Attribute Utility
Decomposition [19] method, the values of Success Likelihood In-
dexes (SLIs) are calculated by multiplying the normalized weight
and state of PSFs, and then the final HEP is computed with a log-
arithmic equation using the values of SLIs, as in Eq. (3). SPAR-H [13]
considers two equations: Eq. (4) is used to calculate the HEP when
negative PSFs are fewer than three, and Eq. (5) is applied to situa-
tions with more than three negative PSFs. Lastly, HEART [7] esti-
mates final HEPs by multiplying nominal human unreliability with
assessed effects which are calibrated from the multiplier of each
EPC as shown in Eq. (6). Though these methods use different
equations for calculating HEPs, they fundamentally handle PSFs
independently in the formulas.

2.2. Approaches to modeling inter-relationships among PSFs

Some HRA methods and studies have tried to consider and
model inter-relationships between PSFs. CREAM [8], SPAR-H [13],

and IDAC [14] try to provide guidance on how to consider mutual
relationships between PSFs at the level of factor assessment. In
addition, some researchers, such as Boring [15], Groth [16], De
Ambroggi and Trucco [17], and Groth and Swiler [20], have raised
an issue about the inter-relationship between PSFs. The following
sections provide a brief description of the HRA methods and
studies.

2.2.1. Cognitive Reliability Error Analysis Method (CREAM) [8].

The CREAM method briefly discussed how each CPCs may in-
fluence the others among nine CPCs in Chapter 6.5 of [8]. For
example, the adequacy of organization has an effect on the general
working condition. On the other hand, the working conditions have a
direct impact on the number of simultaneous goals that the user
must attend to in the sense that improved working conditions may
lead to a reduction in the number of goals. It also discusses the
qualitative relationship between CPCs, e.g., if the working condi-
tions improve, the number of simultaneous goals is reduced.
However, quantitative relations are not provided in the method.

2.2.2. Standardized Plant Analysis Risk-human reliability analysis
(SPAR-H) [13].

SPAR-H provides guidance for HRA practitioners regarding the
issue of mutual relationships between PSFs, though it does not
attempt to quantify every aspect of the mutual influences and re-
lationships between PSFs [13]. SPAR-H provides information for
preventing analysts from double-counting PSF influences. Table 2
can be used as a guide to assigning a qualitative rank (low, me-
dium, or high) to the degree of correlation between the eight PSFs
that are used in this method. Below are the strongest correlations in
the relationship:

e Available time on stress—insufficient available time increases
the stress on each operator.

e Stress on complexity—stress can make the situation appear
more complex because it prevents the operator from perceiving
information.

From Table 2, SPAR-H can be used to draw two preliminary
conclusions. First, the influence between PSFs may be one way. In
other words, PSF 1 may have a strong effect on PSF 2, while PSF 2
may have little or no influence on PSF 1. For example, the available
time has a strong correlation with stress, but stress has a low in-
fluence on available time because available time is sensitive to the
product of system conditions and equipment unavailability. Sec-
ond, some PSFs have an inverse relationship. That is, when the ef-
fect of PSF 1 increases, that of PSF 2 decreases. For example, if an
operator's experience is higher, they may have a higher tolerance
for stressful situations through their ability to deal with the con-
ditions effectively.

2.2.3. Information, decision, and Action in Crew context (IDAC)
model [14].

The IDAC model was developed for use in a computer simulation
platform to probabilistically predict the responses of NPP control
room crews in dealing with system anomalies, and considers inter-
relationships between PSFs [14]. IDAC considers 50 PSFs, which are
entirely composed of 11 hierarchically structured groups. Each
group consists of several PSFs; for example, the physical factor
group includes fatigue and physical limitations. The PSFs within
each group are independent, while PSFs in different groups may
have mutual influences on each other.

2.2.4. Some recent studies on inter-relationships between PSFs
Some researchers have raised an issue about the inter-



J. Park et al. / Nuclear Engineering and Technology 52 (2020) 87—100 89
Table 1
Equations for human error probabilities (HEPs) in several human reliability analysis (HRA) methods.
HRA methods Equations for HEPs
A technique for human error rate prediction (THERP) [1]
n n
HEPrijng = BHEPDiagnosis * H PSFDiagnosisAi + BHEPgxecution * HPSFExecutian,i (1)
1 1
Korean standard-HRA (K-HRA) [18]
n n
HEPginq) :BHEPDiugnosis ° HPSFDiagnosisi + BHEPgxecution * HPSFExecution,i (2)
1 1
Success Likelihood Index Method using Multi-Attribute Utility
Decomposition (SLIM-MAUD) [19] SLI = >"(Normalized Weight (PSF;)-State(PSF;) 3)
Log(1 — HEP) = a-SLI+b
(“a” and “b” are constants that can be obtained by two sets of known HEPs at least.)
Standardized plant analysis risk HRA(SPAR-H) [13]
8
HEP=NHEP- [ [ S; (4)
1
_ NHEP-Is; )
NHEP- (IT§S; — 1) + 1
(S; is the multiplier associated with the values of corresponding PSF levels. Nominal HEP (NHEP) for
diagnosis tasks is 0.01, and NHEP for action task is 0.001)
Human Error Assessment & Reduction Technique (HEART) [7]
Assessed effect = ((Multiplier of EPC — 1) x Assessed proportion of effect) + 1 6)

HEP = Nominal human unreliability-HAssessed effect;

Table 2
The relative relationships among SPAR-H PSFs [13].

Influence of X upon Y Available Stress/Stressors Complexity Experience Procedures Ergonomics  Fitness for duty Work Processes
Time (X1) (X2) (X3) [Training (X4) (X5) [HSI (X6) (X7) (X8)
Available 1.0 Medium to high  Medium to Medium Medium to Medium Low to medium  Low to moderate
Time (Y1) high high
Stress/Stressors (Y2) High 1.0 Medium to Medium Low to Low to Low Low
high medium medium
Complexity (Y3) Medium to High 1.0 Medium to Medium Medium Medium Medium
high high
Experience Low Medium Low 1.0 Low Low Low Low
/Training (Y4)
Procedures (Y5) Low Low Medium Low 1.0 Low Low Medium
Ergonomics Low Low Low to Low Low 1.0 Low Low
/Human-System Interface medium
(HSI)
(Y6)
Fitness for duty (Y7) Low Medium to high  Medium Low Low Low 1.0 Low to medium
Work Processes (Y8) Medium Medium Medium Medium Medium Low Low to medium 1.0

relationship between PSFs in HRA. First, Boring [15] analyzed the
correlation of PSFs based on 82 incident reports from the U.S. In his
research, which PSFs should be used in HRA and how many PSFs
should be included in an analysis are the main contents, based on
Galyean's suggestion, which is to account for the entirety of human
performance using only three PSFs—the individual, the organiza-
tion, and the environment [21]. Correlation analyses for the 8 SPAR-
H PSFs across 651 subtasks were performed, and significant cor-
relations that had mutual relations above +0.20 and a significance
level at a p-value of <0.05 were collected to show heavily related
PSFs. As a result, the significant correlations, particularly for the
action PSFs, suggested two groupings of PSFs:

e Grouping 1: Available time, stress/stressors, complexity, expe-
rience/training, fitness for duty

e Grouping 2: Procedures, ergonomics/human-system interface
(HSI), work processes

In the case of Galyean's suggestion, the first group contains
factors related to the individual (experience/training and fitness for
duty), the environment or situation (available time and
complexity), and a combination of the two. The second group
consists of factors related to the organization and environment
(procedures, ergonomics/HSI, and work processes). While the
grouping does not exactly match Galyean's proposed PSFs, it does
lend credence to Galyean's concerns about the possibility of
double-counting performance effects.

Groth [16] also developed a “9-Bubble” model that provides a
quantitative model of the inter-relationships between PSFs and
links PSFs to error contexts. First, in order to reduce sets of PSFs to
error contexts, a correlation analysis was performed to determine
which PSFs could be combined. Then, a factor analysis was carried
out to link the PSFs to error contexts. Below are the results of the
factor analysis for the 9 PSFs; 4 error contexts were created:
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e Error Context 1: Training, team, loads/perceptions, complexity

e Error Context 2: Organizational culture, attitude, knowledge

e Error Context 3: Organizational culture, attitude, loads/percep-
tions, complexity

e Error Context 4: Resources, complexity

De Ambroggi and Trucco [17] modeled and assessed dependent
PSFs through the Analytic Network Process (ANP). This study dealt
with the development of a framework for modelling the mutual
influences existing among PSFs and a related method for assessing
the importance of each PSF in influencing the performance of an
operator, in a specific context, considering these interactions. ANP
is a method for deciding comparative importance in multi-criteria
decision making, and it is very useful for structuring problems
that are judged on the basis of the knowledge or experience of the
subjects [22]. The core of the method lies in the modeling process,
which is divided into two steps: first, a qualitative network of inter-
relationships between PSFs is identified, and then the importance
of each PSF is quantitatively assessed using the ANP.

Groth and Swiler [20] suggested a Bayesian network model to
represent PSFs’ interactions. Bayesian networks offer a framework
for integrating different sources of information into one model, and
they can be easily updated or expanded with new information. For
HRA purposes, a Bayesian network provides the opportunity to
explicitly contain multiple types of information and data (e.g.,
cognitive literature, insights from operational events, statistical
data, and expert judgments) in the HRA process. In their work, a
Bayesian network was developed for inter-relationships among the
PSFs with SPAR-H guidance.

2.3. The treatment of inter-relationships between PSFs in HRA

There is a consensus that HRA methods need to consider the
inter-relationships between PSFs in estimating HEPs. However, it
is known that one of the main weaknesses of current HRA
methods is their limited ability to model the mutual influences
among PSFs and PSFs’ influences on human performance [23].
Traditional methods including THERP, the Accident Sequence
Evaluation Program (ASEP) [24], and the Cause-Based Decision
Tree (CBDT) [25] method developed by the Electric Power
Research Institute (EPRI) do not directly address the inter-
relationships between PSFs.

SPAR-H and CREAM try to provide guidance on how to adjust
the levels of PSFs based on dependencies but do not consider the
categorization of PSFs or the quantitative impact of one PSF on
another when estimating HEPs. However, some recent studies,
such as those by Boring [15] and Groth and Swiler [20], analyzed
the inter-relationships between PSFs based on the SPAR-H method
and suggested a few groups in which some PSFs show similar
patterns through factor analysis. However, these studies do not
provide guidance on how to use the PSF groups to estimate HEPs.
Therefore, the characteristics of PSF inter-relationships, as well as
how to treat the inter-relationships in the HRA, have to be further
studied.

This study attempts to answer three questions regarding the
treatment of inter-relationships between PSFs. The first question
is, which PSFs have inter-relationships and how strong are the
relationships between them? For identifying the relationships
between PSFs and estimating their correlation coefficients, this
study carried out a correlation analysis using two data sources: 1)
the event history of unplanned trips and unplanned actuation of
safety systems in Korean NPPs, and 2) an experiment conducted in
an NPP simulator with high fidelity and licensed operators. The
two data sources considered in this study may report different
types of information on PSF inter-relationships. Analyzing the PSF

inter-relationships from event reports where the events already
occurred by mechanical or human failures may find those corre-
lations among PSFs that is likely to lead to human error. On the
other hand, the PSFs collected from the simulation experiments
may include all the joint occurrences, even those that may not be
related to the human error. In this study, it is assumed that the
PSFs have correlation to each other regardless of whether human
errors occur or not, but it affects only the strength of the
correlations.

The second question is, are the PSFs correlated each other and
can PSFs that influence others or each other be categorized into
groups? To answer this question, we reviewed several statistical
approaches such as structural equation modeling [26], Bayesian
modeling [16], exploratory factor analysis [27], and confirmatory
factor analysis [27]. First, the structural equation and Bayesian
modeling are more specialized to identify potential cause and effect
relations between variables. Second, the exploratory factor analysis
is a method to combine multiple variables that are highly corre-
lated, then uncover their relationships, i.e., factor groups, where the
researcher does not have a priori hypothesis about factor groups or
patterns of variables. Lastly, the confirmatory factor analysis is used
to verify and test the hypothesis that a relationship between the
variables and their underlying latent factors or constructs is
adequate and needs to have an authoritative theory underlying
their model before analyzing data. In this study, the exploratory
factor analysis was selected as the most adequate method to
identify a PSF group in which PSFs showed similar patterns,
because there is no fixed group of PSF. It may be also effective to
reduce the number of PSFs considered in an HRA, because the
excess of PSFs is a problem with existing HRA methods [15].

The third question is, how can a group of PSFs be applied to the
quantification of HEPs? This study suggests context-based ap-
proaches based on the results of the factor analysis and investigates
the feasibility of the grouped PSFs being treated as a new factor to
estimate HEPs using the experimental data. The reason why we
only considered the PSF groups from the experiment is that it is
favorable to verify the effect of PSF groups on HEPs with error rates
which are estimated by experiment data. Meanwhile, the PSF
groups identified from the event reports do not include the infor-
mation for the error rates. For the PSFs identified from the event
reports, it is compared with other studies related to the inter-
relationship of PSFs.

It is also possible to model some sorts of inter-relationships of
PSFs for estimating a HEP using some existing HRA quantification
techniques such as Bayesian network [16] or decision trees [28].
Many researchers, such as Groth and Swiler [20], and De Ambroggi
and Trucco [17], have modeled the relations between PSFs with
considering casual relationships. However, in order to model these
relations, it is important to generate statistical evidences for sup-
porting the relationships between PSFs. In this study, we tried to
suggest the way to transparently estimate the inter-relationships
from the empirical data and to model the mathematical equation
of HEP as a case study.

3. Inter-relationships of PSFs based on event reports

This study analyzed the inter-relationships of PSFs based on
event reports for Korean NPPs. First, eight PSFs were selected using
the SPAR-H method. Then, event reports on unexpected reactor
trips and initiations of safety systems from the OPIS database were
reviewed and analyzed with respect to the selected PSFs. A corre-
lation analysis was performed to quantify the inter-relationships
between PSFs. Finally, an exploratory factor analysis was per-
formed to generate a couple of PSF groups in which some PSFs were
closely related to each other.
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3.1. PSF selection

Eight PSFs from SPAR-H were considered for the analysis: 1)
experience/training, 2) stress/stressors, 3) complexity, 4) proced-
ures, 5) ergonomics/HSI, 6) available time, 7) work processes, and
8) fitness for duty. Brief descriptions of those PSFs are given below
[13]:

3.1.1. Experience/training

This PSF refers to the experience and training of the operator
involved in the task. This includes years of experience of the indi-
vidual or crew, whether or not the operator/crew has been trained
in the relevant type of accident, and whether or not the operator/
crew has been involved in a similar scenario.

3.1.2. Stress/stressors

Stress refers to the level of undesirable conditions and circum-
stances that impede the operator from easily completing a task.
Stress can include mental stress, excessive workload, or physical
stress.

3.1.3. Complexity

Complexity refers to how difficult the task is to perform in the
given context. Complexity considers both the task and the envi-
ronment in which it is to be performed.

3.1.4. Procedures

Procedures refer to the existence and use of formal operating
procedures for the tasks under consideration. This includes situa-
tions where procedures give wrong or inadequate information
regarding a particular control sequence.

3.1.5. Ergonomics/HSI

Ergonomics/HSI refers to the equipment, displays, controls,
layout, and quality and quantity of information available from
instrumentation, and the interaction of the operator/crew with the
equipment while carrying out tasks.

3.1.6. Available time

Available time refers to the amount of time that an operator or
crew has to diagnose and act upon an abnormal event. A shortage of
time can affect the operator's ability to think clearly and consider
alternatives.

3.1.7. Work processes

Work processes represent factors that can affect operators while
performing tasks: for example, inter-organizational factors, safety
culture, work planning, communication, coordination, manage-
ment support, and policies. How work is planned, communicated,
and executed can affect individual and crew performance.

3.1.8. Fitness for duty

Fitness for duty refers to whether or not the individual per-
forming the task is physically and mentally fit to perform the task at
the time. Things that may affect fitness include fatigue, sickness,
drug use, overconfidence, personal problems, and distractions.

3.2. Analysis of PSF contributions to human errors

Event reports from the OPIS database [29] were reviewed to
investigate the correlations between PSFs in NPPs. In Korea, when
an NPP experiences an unplanned reactor trip, actuation of engi-
neered safety systems, or actuation of an emergency diesel gener-
ator, the regulatory body carries out an in-depth investigation
through various approaches, such as a review of the plant's

operational log and parameter history, interviews with operators,
and a work-down of the plant. Then, a detailed event report,
including the cause, progress, consequence, and corrective actions
of the event, is added to the OPIS database. The report contains the
following information:

e Event sequence with timestamps

e Cause of event

e The trend of main plant parameters

e Adequacy of plant operation status at the time of event initiation
e Adequacy of the response operation

e Evaluation of safety

e Lessons learned and corrective actions

A review of the causes, errors, and failures of 222 events from
2002 to 2017 was conducted. Among them, 64 events contained
operator errors in the cause and/or mitigation. PSFs that contrib-
uted to human errors in 64 events were analyzed with respect to
the 8 PSFs mentioned above. Fig. 1 shows an example of the analysis
of PSF contributions to human errors. If the event report mentioned
that a PSF contributed to human errors, the PSF was coded as “1” on
the spreadsheet; if not, it was coded as “0.”

Table 3 shows the percentage of events in which a PSF influ-
enced human errors. Two or more PSFs can influence a human error
in a single event. The procedure was the influential factor in the
largest percentage of events (73%), followed by experience and
training (63%). Fitness for duty was identified as the lowest influ-
encing factor in only 6%.

3.3. Inter-relationships of PSFs: correlation and factor analyses

3.3.1. Correlation analysis from event reports

A correlation analysis was carried out on the results for the PSFs’
contribution to human errors in the event reports. For the corre-
lation analysis between the PSFs which are composed of binary
data, Phi correlation coefficient that represents a measure of the
degree of correlation between two binary variables is applied [30],
while the correlation analysis is generally carried out between two
continuous variables and its result is indicated as Pearson correla-
tion coefficient. Table 4 shows the results of correlation analysis
from event reports. The results indicated that noticeable correla-
tions existed between the PSFs with p-values, which mean the
probabilities that we would have found the current result if the
correlation coefficient were in fact zero (null hypothesis). If the p-
values are lower than the conventional 5% (P-value < 0.05), the
correlation coefficient is called statistically significant with 95%
confidence level. As a result, a statistically significant and very
strong correlation was found between stress/stressor and available
time (R = 0.651). Relatively strong relations (R > 0.5) were also
found between procedures—experience/training (R = 0.646),
fitness for duty—stress/stressors (R = 0.593), complexity—stress/
stressors (R = 0.588), work processes—complexity (R = 0.526), and
available time—complexity (R = 0.524). Fig. 2 illustrates the re-
lationships between the PSFs, along with the range of correlation
factors.

3.3.2. Exploratory factor analysis and PSF grouping

As introduced in Section 2.3, the exploratory factor analysis is a
method to combine multiple variables that are highly correlated,
then uncover their relationships, i.e., factor groups, where the
researcher does not have a priori hypothesis about factor groups or
patterns of variables [27]. In this study, an exploratory factor
analysis was performed to investigate PSFs’ relationships and then
to identify groups in which some PSFs had similar patterns. Table 5
shows the results of factor analysis based on event reports. The
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Performance Shaping Factors
No. Plant Unit Date Initiating event | Ergonomics Ava‘ilable Procediines Work @Ry Exper.ie'nce / Stress/ Fitness for
/HSI time processes training Stressors duty
1 Hanul 5 2016-12-20 | Hardware Failure 0 0 0 0 0 0 0 0
2 Shin-gori 3 2016-10-31 | Hardware Failure 0 0 1 1 0 0 0 0
3 Wolsong 4 2016-09-12 External Event 0 0 0 0 0 0 0 0
4 Wolsong 3 2016-09-12 External Event 0 0 0 0 0 0 0 0
5 Wolsong 2 2016-09-12 External Event 0 0 0 0 0 0 0 0
6 Wolsong 1 2016-09-12 External Event 0 0 0 0 0 0 0 0
7 | Shin-wolsong 12 2016-09-12 External Event 0 0 0 0 0 0 0 0
8 Gori 1,234 2016-09-12 External Event 0 0 0 0 0 0 0 0
9 Shin-gori 3 2016-08-20 | Hardware Failure 0 0 0 0 0 0 0 0
10 Hanul 5 2016-07-25 - 0 0 0 0 0 0 0 0
11 Wolsong 1 2016-07-22 | Hardware Failure 0 0 0 0 0 0 0 0
12 Wolsong 234 2016-07-05 External Event 1 0 0 0 0 0 0 0
13 Shin-gori 3 2016-07-04 | Hardware Failure 0 0 0 0 0 0 0 0
14 Shin-gori 3 2016-06-13 | Hardware Failure 0 0 0 0 0 0 0 0
15 Hanul 2 2016-05-12 | Hardware Failure 1 0 0 0 0 0 0 0
16 Wolsong 1 2016-05-11 | Hardware Failure 0 0 1 0 0 0 0 0
17 Hanul 4 2016-05-09 | Hardware Failure 0 0 1 0 0 0 0 0
18 Shin-gori 3 2016-03-29 | Hardware Failure 0 0 0 0 0 0 0 0
19 Hanul 3 2016-03-04 = 0 0 0 0 0 0 0 0
20 Hanbit 1 2016-02-27 | Hardware Failure 0 0 1 1 0 1 0 0
21 | Shin-wolsong 2 2016-01-28 | Hardware Failure 0 0 0 0 0 0 0 0
22 Shin-gori 3 2016-01-24 | Hardware Failure 0 0 0 0 0 0 0 0
23 Hanul 1 2016-01-19 | Hardware Failure 0 0 0 0 0 0 0 0
24 Wolsong 2 2015-10-30 External Event 0 0 0 0 0 0 0 0
25 Gori 4 2015-09-03 | Hardware Failure 0 0 0 0 0 0 0 0
26 Hanbit 2 2015-08-08 | Hardware Failure 0 0 0 0 0 0 0 0
27 Hanbit 2 2015-06-03 External Event 0 0 0 0 0 0 0 0
28 Wolsong 4 2015-05-14 Human Error 1 0 1 1 1 1 0 0
29 Hanbit 3 2015-04-16 | Hardware Failure 0 0 0 0 0 0 0 0
30 Hanbit 3 2014-10-17 | Hardware Failure 1 0 1 0 0 0 0 0
Ell Shin-gori 1 2014-10-10 | Hardware Failure 0 0 0 0 0 0 0 0
32 Hanbit 2 2014-10-01 Human Error 1 0 1 1 1 ! 0 0

Fig. 1. An example of the analysis of PSFs' contributions.

Table 3
The percentage of contributions to events by PSFs.
PSF Percentage of events to which the PSF contributed
Ergonomics/HSI 36% (23 out of 64)
Available Time 16% (10 out of 64)
Procedures 73% (47 out of 64)
Work Processes 50% (32 out of 64)
Complexity 19% (12 out of 64)
Experience/Training 63% (40 out of 64)
Stress/Stressors 17% (11 out of 64)

Fitness for Duty 6% (4 out of 64)

factors, i.e., Factor Group 1 and 2, are defined as a construct oper-
ationally defined by its factor loadings, which mean the correla-
tions between a variable and a factor. The numbers in Table 5
represent the factor loadings that are the correlations between
each PSF and Factor Group 1 or 2. Only PSFs that the factor loadings
over 0.5 are generally included in the factor groups, while the
others are removed. The eigenvalue indicates the total amount of
variance for the factor. Only factor groups that have eigenvalues
greater than 1 are recognized as the result of factor analysis. Lastly,
% of variance indicates how much each factor group accounts for
the total variance.

Table 4
Results of correlation analysis from event reports.

The factor analysis identified two factor groups on the basis of
eigenvalues that were over 1.0, as shown in Table 5. Factor Group 1
included five PSFs: ergonomics/HSI, procedures, work processes,
complexity, and experience/training. Those factors were related to
the design elements of human factors engineering (HFE) in NPPs.
HFE aims at designing staffing, procedures, training programs, and
HSI to improve human performance [31]. The work process and
complexity were largely affected by staffing and procedures,
respectively. Therefore, it could be said that Factor Group 1 repre-
sents design factors in the HFE.

Factor Group 2 included available time, complexity, stress/
stressors, and fitness for duty. These factors were those that influ-
enced the workload perceived by operators in the task. Available
time, complexity, and fitness for duty were factors that typically
affected an operator's mental workload. Stress/stressors directly
indicated the operator's workload. Therefore, it could be concluded
that Factor Group 2 represents the PSFs that are related to the
operator's mental workload.

4. Correlations between PSFs based on an experiment in a
simulator with a digital control room

This study investigated the relationships between PSFs in the

Ergonomics/HSI  Available Time Procedures Work Processes Complexity  Experience/Training  Stress/Stressors  Fitness for Duty
Ergonomics/HSI 1
Available Time 0.283™ 1
Procedures 0.367"" 0.313™ 1
Work Processes 0.323" 0.467"" 0.604"" 1
Complexity 0.376" 0.524" 0.413" 0.526" 1
Experience/Training  0.418"" 0.350" 0.646"" 0.475™ 0.458" 1
Stress/Stressors 0.127 0.651" 0.288" 0.379" 0.588" 0.379" 1
Fitness for Duty —0.046 0.297" 0.178" 0.137" 0417" 0.201™ 0.593" 1

Note: **p < 0.01, * 0.01 < p < 0.05.
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Fig. 2. An illustration of relations between PSFs with the range of correlation coefficients.

Table 5
Results of factor analysis based on event reports.

PSFs Factor Group 1 Factor Group 2
Ergonomics/HSI 0.726

Available time 0.654
Procedures 0.795

Work processes 0.721

Complexity 0.509 0.631
Experience/training 0.759

Stress/stressors 0.883

Fitness for duty 0.825
Eigenvalue 2.714 2471

% of variance 33.923 30.882

digital control room of an NPP, based on the authors' previous
experiment [12]. One of the benefits of this experiment was that it
was possible to control and measure the PSFs directly, which is
almost impossible when analyzing event reports. Therefore, more
flexibility was possible in the experiment for the study of inter-
relationships between PSFs. This study selected six PSFs that
were controllable and measurable. Then, correlation and factor

analyses for those PSFs were performed using the experiment's
results.

4.1. PSF selection

Six PSFs were selected for the analysis: operator experience,
available time, task complexity, workload, situation awareness, and
secondary task. Among them, two PSFs— operator experience and
task complexity—were controlled in the experiment, while three
PSFs, —workload, situation awareness, and the secondary
task—were measured. Available time was a combination of
controlled and measured variables.

4.1.1. Operator experience

Operator experience is equivalent to experience/training in
Section 3.1. The experiment saw subjects divided into two groups:
an experienced group and a less-experienced group. All crew
members in the experienced group had operating licenses for a
reactor of the same type as the simulator. The less-experienced
crew group was composed of operators possessing operating
licenses for reactors that were different from the simulator.



94 J. Park et al. / Nuclear Engineering and Technology 52 (2020) 87—100

4.1.2. Available time

Available time was defined by comparing the time available and
the time required. Time available (i.e., defined differently from the
available time) was the period within which the operators should
perform the task. Time available was identified from the assump-
tion of a deterministic safety analysis as well as from operator time
windows from a probabilistic safety assessment. The time required
was the duration of time the operators take to complete the task. It
was obtained by averaging task completion times in the experi-
ment. The available time is determined as a ratio of time required to
time available. This study used three levels of available time-
—sufficient, nominal, and insufficient—as follows:

Sufficient: time required < 0.2 x time available
(equivalent to time available > 5 x time required

in the SPAR — H)

Nominal : 0.2 x time available < time required
< 0.8 x time available

Insufficient: time required > 0.8 x time available

4.1.3. Task complexity

To control task complexity, which is equivalent to complexity in
Section 3.1, the scenarios were divided into three groups: (1)
nominal, (2) moderate, and (3) complex. The nominal group of
scenarios included design-based accidents. The moderate group
included a scenario where there existed a masking of information
or a minor discrepancy from procedures (or operator's expectancy).
The complex group contained scenarios of beyond-design-based
accidents. Additionally, this classification was also evaluated by
the factors contributing to task complexity suggested in the SPAR-H
method. The large number of actions required, misleading or absent
indicators, or a large amount of communication required are the
examples of the contributing factors.

4.1.4. Workload

Workload corresponds to stress/stressors in the SPAR-H
method. A modified Cooper-Harper rating scale [32] was used for
measuring the workload in the experiment.

4.1.5. Situation awareness

Situation awareness refers to the perception of elements in the
environment within an extent of time and space and the compre-
hension of the meaning and projection of the status of the elements

Table 6
Summary of the scenarios.

in the near future [32]. Situation awareness is not a general PSF
considered in HRAs, although it is a popular human performance
measure in the fields of human factors engineering and psychology.
However, situation awareness is considered a cognitive factor
affecting operator performances in HRA methods: for example,
THERP. In particular, situation awareness is more emphasized in a
digital control room, where operators' cognitive behavior plays a
more important role in the operation than in analog control rooms
[33]. A situation awareness rating technique (SART) was used to
measure the subjects’ situation awareness in the scenario.

4.1.6. Number of secondary tasks per instruction

Secondary tasks are also called interface management tasks.
They refer to the tasks required to access information in a digital
control room, such as configuring, navigating, arranging, interro-
gating, and automating the interface. They are considered as a
potential PSF in a digital control room [31,34,35]. The number of
secondary tasks per procedural instruction was also counted in the
experiment.

4.2. Experimental design

4.2.1. Scenarios

Six scenarios were developed to reflect the different conditions
of two PSFs (available time and task complexity). They are sum-
marized in Table 6. Scenarios 1, 2, and 3 included actions that
needed to be performed within 30 min after the initiation of a
failure or reactor trip. The PSF of available time was calculated by
using the completion time of subjects: that is, the time required. In
Scenario 2, the failure of N16 indicators—that is, the radiation in-
dicator on the steam line—was expected to make the diagnosis of a
steam generator tube rupture (SGTR) difficult since the detection of
radiation in the steam line is a critical cue in determining such an
accident. The SGTR with the failure of N16 indicators was also used
as a difficult scenario in the human factors engineering validation
for NPPs [32]. An interface loss of coolant accident (LOCA) was
evaluated as being moderately complex because the plant behavior
was different from typical LOCAs.

4.2.2. Subjects

Six crews (18 operators) participated in the experiment. Each
crew included three operators: a shift supervisor, a reactor oper-
ator, and a turbine operator. All of the operators in the experienced
group had operating licenses for the reference plant, which was a
pressurized water reactor with a digital control room. The other
nine operators in the less-experienced group did not have oper-
ating licenses for the reference plant, but had licenses for other

No. Scenario Time available Task complexity
1 Loss of offsite power + spurious opening of an atmospheric dumping valve 30 min Nominal
2 Steam generator tube rupture + failure of N16 indicators (masking of information) 30 min Moderate
3 Loss of coolant accident + failure of safety injection system 30 min Complex
4 Interface system loss of coolant None Moderate
5 Excessive stem demand event + failure of N16 indicators None Nominal
6 Loss of all feedwater 60 min Complex
Table 7
Comparison of the two groups with respect to operator experience.
Groups Number of operators Average age Average work experience License
Experienced 9 (3 crews) 42 13 years Reference plant and other types of plant
Less Experienced 9 (3 crews) 44 12 years No reference plant, but other types of plant
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Fig. 3. APR1400 simulator.

types of plant. The average age of the participants was approxi-
mately 43 years, and the average experience in plant operation was
approximately 12.5 years, as shown in Table 7.

4.2.3. Experimental facility

An NPP simulator with high fidelity was used as the experi-
mental facility (see Fig. 3). It contained digital instrumentation and
control and a digital main control room. The advanced control room
design incorporated extensive computerization and automation of
facilities to enhance operator decision-making and reduce operator

Table 8
Experimental conditions of PSFs.

workload. The simulator consisted of a large display panel and an
operator console that could accommodate three operators. Each
operator had three computer screens. Operator performance data,
such as time, error rate, and secondary tasks, were collected
through observation, audio/video recording, and simulator log data.
Three or four HRA experts observed the operators’ task perfor-
mance to collect operator error data in the scenario. Audio/video
recordings were also used to analyze time performances and errors.
Operator log data in the simulator were stored to analyze the time
and secondary tasks.

4.2.4. Experimental procedure

Each crew dealt with six scenarios; performance data for a total
of 36 scenarios were collected. Each crew took approximately 6 h to
address the six scenarios. Prior to conducting the scenarios, an
introductory session was held to provide an overview of the
experiment and convey information on the tasks that needed to be
performed within 30 min. An additional day of training was con-
ducted for the less-experienced group, to allow them to familiarize
themselves with the digital MCR. A test scenario confirmed that the
groups showed a consistent level of performance prior to entering
the scenarios.

4.3. Inter-relationship of PSFs: correlation and factor analyses

In the experiment, a total of 36 scenarios were conducted. Two
PSFs were controlled by the experimental conditions: experience
and task complexity. Three were measured in the experiment:

Crew Scenario Experience Task Complexity Available Time
Level Quantity Level Quantity Level Quantity
1 1 High 0.5 Nominal 1 Sufficient 0.1
2 High 0.5 Moderate 2 Nominal 1
3 High 0.5 Complex 5 Nominal 1
4 High 0.5 Moderate 2 Sufficient 0.1
5 High 0.5 Nominal 1 Sufficient 0.1
6 High 0.5 Complex 5 Nominal 1
2 1 High 0.5 Nominal 1 Sufficient 0.1
2 High 0.5 Moderate 2 Nominal 1
3 High 0.5 Complex 5 Nominal 1
4 High 0.5 Moderate 2 Sufficient 0.1
5 High 0.5 Nominal 1 Sufficient 0.1
6 High 0.5 Complex 5 Sufficient 0.1
3 1 High 0.5 Nominal 1 Nominal 1
2 High 0.5 Moderate 2 Nominal 1
3 High 0.5 Complex 5 Nominal 1
4 High 0.5 Moderate 2 Sufficient 0.1
5 High 0.5 Nominal 1 Sufficient 0.1
6 High 0.5 Complex 5 Nominal 1
4 1 Low 3 Nominal 1 Sufficient 0.1
2 Low 3 Moderate 2 Nominal 1
3 Low 3 Complex 5 Insufficient 10
4 Low 3 Moderate 2 Sufficient 0.1
5 Low 3 Nominal 1 Sufficient 0.1
6 Low 3 Complex 5 Nominal 1
5 1 Low 3 Nominal 1 Sufficient 0.1
2 Low 3 Moderate 2 Nominal 1
3 Low 3 Complex 5 Nominal 1
4 Low 3 Moderate 2 Sufficient 0.1
5 Low 3 Nominal 1 Sufficient 0.1
6 Low 3 Complex 5 Nominal 1
6 1 Low 3 Nominal 1 Sufficient 0.1
2 Low 3 Moderate 2 Nominal 1
3 Low 3 Complex 5 Nominal 1
4 Low 3 Moderate 2 Sufficient 0.1
5 Low 3 Nominal 1 Sufficient 0.1
6 Low 3 Complex 5 Nominal 1
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Table 9
Results of the correlation analysis for six PSFs from the experiment.
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Experience Available Time Task Complexity Number of Secondary Tasks Workload Situation Awareness
Experience 1
Available Time 0.155 1
Task Complexity - 0.394* 1
Number of Secondary Tasks 0.08 —0.076 —0.159 1
Workload 0.399* 0.053 0.131 0.507** 1
Situation Awareness -0.223 -0.114 —0.429** —0.434** —0.551** 1

Note: ** = p < 0.01, * = 0.01 < p < 0.05.

workload, situation awareness, and the number of secondary tasks.
Available time was estimated by using a combination of controlled
and measured variables. Table 8 shows the experimental conditions
of the PSFs for the 36 scenarios and the quantitative values of the
conditions used for the correlation analysis. The quantitative value
is based on the multiplier of PSFs in the SPAR-H method.

Table 9 presents the results of a correlation analysis between
PSFs. The correlation between experience and task complexity was
not analyzed because both were controlled variables. The results
indicate that the relationships of six pairs of PSFs were statistically
significant. Fig. 4 shows the relationships between the PSFs with
correlation coefficients and statistical significances. A strong cor-
relation was found between workload and the number of second-
ary tasks (R = 0.507). Workload and situation awareness showed a

Operator 0.008
Experience
0.155
-0.223
-0.076
Available time

-0.114  .0.159

0.131

0.394

Task
Complexity

- 0.429

strong negative correlation (R = —0.551).

Two factor groups were identified through the exploratory
factor analysis, on the basis of their eigenvalues being over 1.0, as
shown in Table 10. In Factor Group 1, three PSFs—workload, situ-
ation awareness, and the number of secondary tasks—showed a
similar pattern, while the Factor Group 2 included experience and
available time PSFs. For the workload and number of secondary
tasks in Factor Group 1, these contributed positively to this group,
while situation awareness contributed negatively.

5. Context-based approaches to treating the inter-
relationship of PSFs

This section suggests a context-based approach based on the PSF
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instruction
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Fig. 4. An illustration of the correlations between six PSFs from the experiment.
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Table 10
The results of the exploratory factor analysis from the experiment.

PSFs Factor Group 1 Factor Group 2
Operator experience 0.709
Available time 0.760

Task complexity

Number of secondary tasks 0.808

Workload 0.837

Situation awareness -0.774

Eigenvalue 2.044 1.253

% of variance 40.876 25.068

groups identified from experimental data. Then, the feasibility of
the grouped PSFs being treated as a new factor to estimate HEPs is
examined using experimental data.

This study identified two PSF groups from the experiment. Fig. 5
shows the two factor groups and the factor scores of PSFs, which
indicate the weightings between a PSF and the factor. Using the
definitions of the factor analysis, Factor Group 1 from the experi-
ment consists of three variables: the number of secondary tasks,
workload, and situation awareness, while Factor Group 2 includes
two PSFs, i.e., operator experience and available time. The contri-
bution of PSFs to the factor group can be represented by their factor
scores, as shown in Fig. 5.

This section shows a case study for the feasibility of applying PSF
groups to the estimation of HEPs. The experiment in Section 4 also
measured operators’ errors while following the instructions for the
procedures used in each scenario. This section investigates how the
results of the factor analysis could be used to estimate the HEP in
the experiment. First, we defined a PSF group score to evaluate the
effect of a PSF group that contained PSFs. A PSF group score can be
calculated by the sum of multiplications with a factor score of PSF
(See Fig. 5) and a normalized score of an individual PSFE. This also
corresponds with the method to estimate a factor group score in
the theory of exploratory factor analysis [27]. The normalized score
of an individual PSF represented the result of a PSF evaluation in the
HRA. For instance, if the scenario was evaluated as “extremely
complex,” we assigned “1 (highest score)” to the normalized score
of complexity. Thus, the PSF group value was calculated as follows:

n
PSF group score = Z factor score of PSF i
i

x normalized score of individual PSF i (7)

(n = the number of PSFs in the group).

Table 11 shows an example of the normalized scores of indi-
vidual PSFs for Scenario 2 in the experiment. Workload, situation
awareness, and number of secondary tasks in the scenario were
evaluated as 0.30, 0.53, and 0.49, respectively. Then, the PSF group
score for Group 1 for the scenario could be calculated using the
factor scores in Fig. 5, as shown below:

Number of

secondary tasks Workload

0.438 0.394
Factor Group 1

T -0.368

Situation
awareness

PSF group score for Group 1=0.394 x 0.30 — 0.368 x 0.53
+0.438 x 0.49
=0.14

Next, the process to calculate the total PSF score was outlined. As
mentioned in Section 3.3.2, a factor is defined as a construct
operationally defined by its factor loadings in the exploratory factor
analysis. The factor is a condensed statement describing the rela-
tionship between a set of variables, while the factor loadings are the
correlations of a variable with a factor. The sum of squares of the
factor loadings for each factor reflects the proportion of variance
explained by each factor. An eigenvalue is the total amount of
variance for the factor. The average of the squared loadings of a
factor (i.e., eigenvalue/the number of variables in the factor) shows
the percentage of variance explained by that factor. For instance, if a
factor has an eigenvalue of 1.74 and four variables, then, 1.74/
4 = 0.43; thus, the factor can explain 43% of the variance in the
correlation matrix.

The total PSF score is the weighted sum of the PSF group scores.
This score evaluates the effect of total PSFs that were influential in a
scenario. As a weighting factor, the score used the “eigenvalue of a
factor/the number of variables in the factor,” which means the
extent to which the factor could explain the variance in the cor-
relation matrix, as mentioned above. The total PSF score could be
calculated by using the following formula:

Eigenvalue of Group j
number of PSFs in Group j

m
Total PSF Score = > The
Jj

x PSF group score for Group j (8)

(m = the number of PSF groups).
The total PSF score for the scenario was calculated as follows:

Total PSF Score for Scenario 2 = 2044 x 0.14 + 1.253

3 5 % 0.063

=0.13

In addition, we performed multivariable linear regression
analysis for both factor groups, PSF Group 1 and 2 with error rate.
equation (9) below indicates the relationship between the error
rate and PSF group scores. It is also satisfied with a statistically
significant level (p-value < 0.05) and indicates an R-square value of
0.281, which means a goodness-of-fit measure for the regression
model. In the equation, the coefficients for PSF group score of group
1 and 2, i.e, 0.026 and 0.008, are statistically significant (p-
value < 0.05), while the constant, i.e., 0.0013, is not satisfied with
statistical confidence level.

Error rate =0.0013 + 0.026 x PSF group score of group 1
+0.008 x PSF group score of group 2 (9)

0.552 0.637

Available
time

Operator
experience

Factor Group 2

Fig. 5. Identified PSF groups from the experiment.
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Table 11
An example of calculating PSF group scores.

Scenario Normalized Score of Individual PSFs for Group 1

Workload Situation Awareness Number of Secondary Tasks

Group Score of Group 1 Normalized Score of Individual PSFs

Group Score of PSF Group 2
for Group 2

Available Time Operator Experience

2 0.30 0.53 0.49 0.14

0.10 0 0.063

Lastly, we performed the correlation analysis on 1) PSF group
score of group 1, 2) PSF group score of group 2, 3) total PSF score, 4)
error rate predicted by equation (9), and 5) SPAR-H PSF score with
error rate estimated by the experiment. For the SPAR-H PSF scores,
the experimental conditions of PSFs in Table 8 were used. For
instance, the multiplication of PSF quantities for Scenario 1 of Crew
1 could be calculated as follows:

3
SPAR — H score = | [PSF Quantity;
1

= 0.5 (experience) x 1(Task Complexity)
x 0.1 (Available Time)
= 0.05

Table 12 presents the results of the correlation analysis. The
results show that the correlations on PSF group score of group 1,
PSF group score of group 2, total PSF score and error rate predicted
by equation (9) with error rate estimated by the experiment are
statistically significant, respectively. Especially, the error rate pre-
dicted by equation (9) showed a stronger correlation with the error
rate estimated by the experiment. However, the SPAR-H PSF score
did not show any statistical correlation with the error rates.

6. Discussion
6.1. Comparison of the results with those of other studies

The PSFs collected from event reports in this study are found in
the SPAR-H method which has been broadly used by both industry
and regulators in its intended area of use (i.e., NPPs in the U.S.), as
well as in other industries [36,37]. Moreover, these are also rela-
tively common when comparing with the other studies.

This section compares the results of this study from the event
report analysis with those of others related to the inter-relationship
of PSFs—that is, Groth's [16], Boring's [15], and Gaylean's [21]
works. Table 13 summarizes the comparison of PSF grouping
from those studies.

Some similar patterns can be observed in the groupings of PSFs.
First of all, the results of this study showed a similar pattern to
Boring's study. Three PSFs—ergonomics/HSI, procedure, and work
processes—are common between Group 1 (i.e., HFE design factor)
resulting from the event report analysis of Section 3 and Grouping 2
of Boring's study. The HFE design factor also shares three PSFs
(ergonomics/HSI, procedure, and experience/training) with the
organization environment in Gaylean's study.

Table 12

Group 2 (i.e., workload factor) from Section 3 of this study also
includes common PSFs with Error Context 1 of Groth's study and
Grouping 1 of Boring's study. Three PSFs (available time,
complexity, and stress/stressor) are shared by all three. Addition-
ally, fitness for duty is found in the groups of this study and in that
of Boring. Even though the data were obtained from different
countries (i.e., Korea and the U.S.), these studies showed similar
patterns in the grouping of PSFs.

In summary, these comparison results may indicate that the
PSFs which have been considered individually in the existing HRAs
could be combined into a lower number of PSF groups. As a next
step, an approach to treat these PSF groups needs to be further
suggested for estimating HEPs while reflecting the effect of inter-
relationships between the PSFs.

6.2. Feasibility of context-based approaches to treating the inter-
relationship of PSFs

This study suggests two different context-based approaches to
treat inter-relationship of PSFs based on the PSF groups. One is to
calculate the total PSF score, while the other one is to use multi-
variable linear regression analysis for factor groups. In Table 12, it is
identified that the both approaches are statistically significant, but
the latter one shows the higher correlation coefficient.

For the total PSF score, it is useful to combine all the effects of
PSF into a value. The method for calculating the total PSF score
basically depends on weighting values, i.e., factor scores or eigen-
values, which are based on the results of the factor analysis having
statistical backgrounds [38]. However, it may be difficult to
generalize that the total PSF score could be accountable for error
rates, even if we identified a statistically significant relation be-
tween the total PSF score and error rates. It's because this study
does not include how much the total PSF score indicates the error
rates. Therefore, this study may conclude that the latter approach is
more feasible to treat the inter-relationship of PSFs. The approach
showed the higher correlation coefficient as well as the direct
relation between the PSF group score and error rates.

The SPAR-H PSF score did not show any statistical correlation
with the error rates. In fact, the multiplier values for the eight SPAR-
H PSFs are mapped from the data suggested by THERP [39]. How-
ever, most of the available data for estimating HEPs in THERP are
basically relying on expert judgment, and sparse empirical and
experience-based data mostly from non-nuclear experience [40].
Therefore, this result may highlight a fundamental issue of current
HRA which is still a lack of data in terms of addressing the effects of
the PSFs on a HEP and estimating the HEP with determination of

Correlation analysis for the PSF group values and error rates in the experiment.

Relationship

Correlation Coefficient (p-value)

PSF group score of group 1 vs. error rate

PSF group score of group 2 vs. error rate

Total PSF score vs. error rate

Error rate predicted by equation (9) vs. error rate
SPAR-H PSF score vs. error rate

0.444 (p < 0.05)
0.376 (p < 0.05)
0.487 (p < 0.05)
0.530 (p < 0.05)
0.085 (p > 0.05)
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Table 13
Comparison of PSF groupings from four studies.

This study (from the event report analysis Groth [16]

Boring [15] Gaylean [21]

e Group 1 (HFE design factor): ergonomics/HSI, e Error Context 1: Training, team, e Grouping 1: Available time, stress/ ¢ Population Capability:

procedures, work processes, complexity, and
experience/training

e Group 2 (workload factor): available time,
complexity, stress/stressors, and fitness for
duty

loads/perceptions, complexity
culture, attitude, knowledge

culture, attitude, loads/
perceptions, complexity
e Error
complexity

e Error Context 2: Organizational

e Error Context 3: Organizational

Context 4: Resources,

intelligence,
experience, and general education

e Organizational Environment: work-
related training, procedure, instru-
ment, and safety culture

e Event Specifics: time
uniqueness of situation

stressors, complexity, experience/
training, fitness for duty

e Grouping 2: Procedures, ergonomics/
HSI, work processes

constraints,

PSF quantification values [41,42].

This study tried to treat PSF inter-relationships by involving all
the possible interactions between the states of the PSFs and be-
tween the influences of the PSFs on human performances, such as
correlation, dependency, overlapping, or combinational effects
with the causal relations. Then, as a relatively simple approach, we
suggested how to estimate HEPs based on the result of factor
analysis, i.e., PSF groups combining all the possible interactions
between PSFs. However, identifying and understanding these in-
teractions are still remaining issues in this research. In fact, the
factor analysis only shows that there are relations between the
variables, but cannot explain the reasons why there are the re-
lations or how they are related each other. In HRA, it is important to
account for whether there are relationships with casual effects,
whether some of PSFs always affect each other, whether the PSFs
have different phenomena affected by the same cause, or whether
the experimental design is misconstrued. Representatively, the
grouped PSFs in this study might be influenced by the experimental
design, because how a PSF related to other PSFs was controlled by
experimental design. For example, for Factor Group 2 (See
Table 10), the available time and operator experience PSFs are
grouped into a factor, although these do not have any correlation. In
fact, the available time is independent with experience because it is
determined by scenario or accident severity. Nevertheless, they
might be grouped into a factor because the relation between
available time and experience simultaneously shapes a temporal
pressure to operators. If this is true, these two PSFs have a relation
supporting a combinational effect. This effect has been observed in
the other study. Kim et al. [43] identified that some sort of HEP can
dramatically increase when quality of procedure and experience
are evaluated as low, although these PSFs may not have any cor-
relation. Therefore, these issues need to be further studied in the
future.

7. Conclusion

This study investigated the inter-relationships between PSFs for
HRAs of NPPs. Although it is obvious that PSFs have relationships
with each other, current HRA methods do not treat the combined
effect of PSFs on human errors sufficiently. Based on the two data
sources of event reports from Korean NPPs and an experiment with
a simulator, this study performed correlation and factor analyses.
As a result, several PSF groups in which PSFs showed a similar
pattern were identified. Finally, this study discussed the feasibility
of using the identified PSF groups to estimate HEPs in the results of
the experiment.
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