• Title/Summary/Keyword: Error Source

Search Result 1,253, Processing Time 0.026 seconds

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

Artillery Error Budget Method Using Optimization Algorithm (최적화 알고리즘을 활용한 곡사포의 사격 오차 예측 기법)

  • An, Seil;Ahn, Sangtae;Choi, Sung-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2017
  • In R&D of artillery system, error budget method is used to predict artillery firing error without field firing test. The error budget method for artillery has been consistently developed but apply for practical R&D of the weapon system has been avoided because of lacks of error budget source information. The error budget source is composed of every detailed error components which affect total distance and deflection error of artillery, and most of them are difficult to be calculated or measured. Also with the inaccuracy of source information, simulated error result dose not reflect real firing error. To resolve that problem, an optimization algorithm is adopted to figure out error budget sources from existing filed firing test. The method of finding input parameter estimation which is commonly used in aerodynamics was applied. As an optimization algorithm, CMA-ES is used and presented in the paper. The error budget sources which are figured out by the presented method can be applied to compute ROC of new weapon systems and may contribute to an improvement of accuracy in artillery.

Design & Analysis of an Error-reduced Precision Optical Triangulation Probes (오차 최소화된 정밀 광삼각법 프로브의 해석 및 설계)

  • Kim, Kyung-Chan;Oh, Se-Baek;Kim, Jong-Ahn;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.411-414
    • /
    • 2000
  • Optical Triangulation Probes (OTPs) are widely used for their simple structure. high resolution, and long operating range. However, errors originating from speckle, inclination of the object, source power fluctuation, ambient light, and noise of the detector limit their usability. In this paper, we propose new design criteria for an error-reduced OTP. The light source module for the system consists of an incoherent light source and a multimode optical fiber for eliminating speckle and shaping a Gaussian beam Intensity profile. A diffuse-reflective white copy paper, which is attached to the object, makes the light intensity distribution on the change-coupled device(CCD). Since the peak positions of the intensity distribution are not related to the various error sources, a sub-pixel resolution signal processing algorithm that can detect the peak position makes it possible to construct an error-reduced OTP system

  • PDF

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

A Study on Coding Education for Non-Computer Majors Using Programming Error List

  • Jung, Hye-Wuk
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.203-209
    • /
    • 2021
  • When carrying out computer programming, the process of checking and correcting errors in the source code is essential work for the completion of the program. Non-computer majors who are learning programming for the first time receive feedback from instructors to correct errors that occur when writing the source code. However, in a learning environment where the time for the learner to practice alone is long, such as an online learning environment, the learner starts to feel many difficulties in solving program errors by himself/herself. Therefore, training on how to check and correct errors after writing the program source code is necessary. In this paper, various types of errors that can occur in a Python program were described, the errors were classified into simple errors and complex errors according to the characteristics of the errors, and the distributions of errors by Python grammar category were analyzed. In addition, a coding learning process to refer error lists was designed to present a coding learning method that enables learners to solve program errors by themselves.

Error Characteristics of Ship Radiated Noise Estimation by Sea Surface Scattering Effect (해면 산란효과에 의한 선박 방사소음 추정치 오차)

  • Park, Kyu-Chil;Park, Jihyun;Seo, Chulwon;Choi, Jae Yong;Lee, Phil-Ho;Yoon, Jong Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.563-573
    • /
    • 2013
  • The ship radiated noise level fluctuates by the interference between direct and reflected paths. The effect of sea surface reflection path on interference depends strongly on sea surface roughness. This paper describes error characteristics of ship acoustic signature estimation by sea surface scattering effect. The coherent reflection coefficient which explains a magnitude of sea surface scattering and its resultant interference acoustic field is analyzed quantitatively as a function of a grazing angle, effective surface height, frequency, source-receiver range and depths of source and receiver. Theoretical interference acoustic field is compared with experimental result for two different sea surfaces and five different frequencies by changing source-receiver range. It is found that both matches well each other and a magnitude of interference acoustic field is decreasing by increasing a grazing angle, effective surface height, frequency, and depths of source and receiver and decreasing source-receiver range. For given experimental conditions, the transmission anomaly which is a bias error of ship acoustic signature estimation, is about a range of 1~3 dB. The bias error of an existing ship radiated noise measurement system is also analyzed considering wind speed, source depth and frequency.

A DAC calibration technique for high monolithic operation (높은 선형동작을 위한 새로운 DAC 오차보정 기법에 관한 연구)

  • 이승민;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.413-416
    • /
    • 1998
  • This paper presents a dAC calibration technique for high resolution and monolithic operation. The calibration technique consists of basic source, current memory cell (C.M) and current substrator. Current memory supplies the error current to basic source. Current substrator extracts the error current from the main source. It is simple and needs no special calibration period. The proposed current cell has high calibration performance and guarantees 100MHz operation.

  • PDF

The Method of Elevation Accuracy In Sound Source Localization System (음원 위치 추정 시스템의 정확도 향상 방법)

  • Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.24-29
    • /
    • 2009
  • Sound source localization system is used in a robot, a video conference and CCTV(Closed-circuit television) systems. In this Sound source localization systems are applied to human and they can receive a number of sound data frames during speaking. In this paper, we propose methods which is reducing angle estimation error by selecting sound data frame which can more precisely compute the angles from inputted sound data frame. After selected data converted to angle, the error of sound source localization recognition system can be reduced by applying to medium filter. By the experiment using proposed system it is shown that the average error of angle estimation in sound source recognition system can be reduced up to 31 %.

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

Effect of Phase Error on the Lateral Resolution of Reconstruction Image in Incoherent Triangular Holography (인코히어런트 삼각 홀로그래피에서 위상오차가 횡축방향의 해상도에 미치는 영향에 관한 연구)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.1-6
    • /
    • 2013
  • It is introduced the phase error sources of a incoherent hologram in incoherent triangular holography and derived the reconstruction image of point-source including the phase error in the lateral direction. From the reconstruction image of point-source, we analyzed the effect of phase error on the lateral resolution. When the phase retardation errors and azimuth angle error of a wave plate and a polarizer range from 0 to $2{\pi}/15$, the normalized intensities of reconstructed images are down by about 0.1% and 2.3%, respectively.