International Journal of Advanced Culture Technology Vol.9 No.1 203-209 (2021)
DOI https://doi.org/10.17703/1JACT.2021.9.1.203

IJACT 21-3-28

A Study on Coding Education for Non-Computer Majors
Using Programming Error List

Hye-Wuk Jung

Assistant Professor, Dept. of College of Liberal Arts and Interdisciplinary Studies, Kyonggi
University, Korea
wukj@kyonggi.ac.kr

Abstract

When carrying out computer programming, the process of checking and correcting errors in the source
code is essential work for the completion of the program. Non-computer majors who are learning
programming for the first time receive feedback from instructors to correct errors that occur when writing
the source code. However, in a learning environment where the time for the learner to practice alone is long,
such as an online learning environment, the learner starts to feel many difficulties in solving program errors
by himself/herself. Therefore, training on how to check and correct errors after writing the program source
code is necessary. In this paper, various types of errors that can occur in a Python program were described,
the errors were classified into simple errors and complex errors according to the characteristics of the
errors, and the distributions of errors by Python grammar category were analyzed. In addition, a coding
learning process to refer error lists was designed to present a coding learning method that enables learners
to solve program errors by themselves.

Keywords: Program Error, Coding Education, Non-Computer Majors, Software Education, Error List

1. INTRODUCTION

As software education has been activated recently to cultivate talent in the Fourth Industrial Revolution
era, universities are carrying out coding education for non-computer majors[1]. The learners encounter
numerous program errors in the process of learning the basic theory of computer programming and
practicing using examples[2]. Program errors can be classified into syntax errors, runtime errors, and logic
errors, as shown in Table 1.

Table 1. Types of program errors

Types of errors Example

Syntax errors Incorrect keyword, Incorrect punctuation, Undefined variable

Runtime errors Division by zero, Infinite loop, Incorrect conditional expression,
Incorrect operation expression

Logic errors Incorrect algorithm, Incorrect grammar

Manuscript received: February 3, 2021 / revised: February 10, 2021 / accepted: February 19, 2021
Corresponding Author: wukj@kyonggi.ac.kr
Assistant Professor, Dept. of College of Liberal Arts and Interdisciplinary Studies, Kyonggi University, Korea

204 International Journal of Advanced Culture Technology Vol.9 No.1 203-209 (2021)

Syntax errors are compilation errors that occur during the compilation process due to grammatical errors
in the written code and appear when a keyword or punctuation mark is written incorrectly, or an undefined
variable is used. Runtime errors occur when a program is not executed normally due to an incorrect
conditional expression or operation expression, and logic errors are errors that lead to the inability to obtain
desired results from a program created due to a problem with the algorithm or grammar[3].

The various errors that occur when coding a computer program are corrected through processes in which
the learner examines the source code to find and solve the errors. These processes are indispensable to
identify the results of the written program or to complete program development[4].

Non-computer majors who are not familiar with computer languages receive feedback from instructors to
correct program errors because they can hardly solve program errors by themselves[5]. However, since there
are limitations for the instructor to teach a large number of students with only his/her feedback for a limited
time, programming learning methods that enable the learner to efficiently resolve errors by themselves have
been proposed.

J. M. Lee and K. H. Lee designed a mental-model using metaphors, applied it to classes, and analyzed
changes in the error patterns of novice learners of programs. He showed that learners who used metaphors
made fewer program errors than those who did not[6]. However, since learning effects appear differently
according to the levels of difficulty of tasks and only limited conditions were considered, the diversity of
learners should be considered.

H. Jang et al. presented a method to construct an error feedback system for beginners in programming in
order to provide feedback and examples for code errors, thereby enabling learners to quickly correct code
errors[7]. J. W. Nam and I. H. Yoo analyzed the errors generated in robot programming by type and
developed an error resolution support tool based on the foregoing analysis so that learners can easily solve
code errors[8]. P. Koyya et al. proposed a method to improve code by providing feedback when a learner
completes an assignment using software metrics and reference codes[9]. A. J. Ko and B. A. Myers developed
a model to classify programming error types and infer, explain, and predict errors to derive design guidelines
for new programming tools[10]. S. Krusche et al. built a code review workflow through peer review of
programming learners so that it can be used for software development and quality control[11]. These
methods provide support systems for learners to resolve code errors but have shortcomings in that beginners
who are new to the programs may feel burdened in learning how to use these systems and can hardly develop
the ability to resolve errors by themselves because they may become dependent on the systems.

There are limitations in applying existing studies to online classes at universities that have been changing
recently due to the effect of COVID-19 because they did not consider the online learning environment. When
holding a coding class online, the instructor can provide feedback to learners' questions through e-mail, etc.,
and present problem-solving methods through real-time video conferencing. However, in an online
classroom environment where the time to study alone is long, when a coding error occurs while the learner is
practicing by himself/herself, the learner has to review and correct the error by himself/herself and
experiences many difficulties in the process. Consequently, developing the ability of learners to learn and
solve errors by themselves is a very important issue in the online classroom environment.

Therefore, in order to enable non-computer major learners to solve coding errors by themselves, errors
will be classified and analyzed in this paper according to the characteristics of errors occurring in Python
programs and a coding learning method with the process applied to refer to error lists will be proposed.

2. CLASSIFICATION AND ANALYSIS OF PYTHON PROGRAM ERRORS

In this paper, errors were classified for the Python language, which can be learned easily even by
beginners and is widely used for education[12, 13]. As for error classification, various types of errors were
classified into simple errors and complex errors according to the degree of difficulty for learners to solve the
errors by themselves so that learners can easily refer to them when studying on their own. Figure 1 shows the
process of classifying various types of errors that can appear in Python grammar into simple and complex
errors according to their characteristics.

A Study on Coding Education for Non-Computer Majors Using Programming Error List

205

Python Grammar

Types of Errors

Error Classification

SyntaxError
NameError
Input/Output Egtérror
Variable OLError
Operator ZeroDivisionError
pList N TypeError
Conditions IndexError
iti RuntimeError
Repetitions eibrisg:
Fdion IndentationError
AttributeError
ImportError

Simple Error

Fe

Complex Error

Figure 1. Classification according to Python grammar and types of errors

Examples of errors classified into simple and complex errors are shown in Table 2.

Table 2. Simple error and complex error of Python

Error Classification ~ Example Types of errors
Typing mistake SyntaxError
Incorrect punctuation marks SyntaxError
Undefined variables NameError
Typing mistake in function’s bracket EOFError
Simple Error Typing mistake in quotation marks EOLError
Division by zero ZeroDivisionError
Incorrect data type TypeError
List index out of range IndexError
Call of non-existent key KeyError
Incorrect formula declaration RuntimeError
Incorrect use of conditional statements LogicError
Incorrect use of repetition statements LogicError
Incorrect indentation IndentationError
Incorrect use of “return” in a function TypeError
Complex Error : .
Incorrect use of parameters in a function TypeError
Use of incorrect function names NameError
Use of non-existent attribute of a module AttributeError
Referring an incorrect function of a module ~ NameError
Use of incorrect module names ImportError

Simple errors mean ones that occur in the basic rules of Python, which happen frequently in Python
grammar, and include SyntaxError, NameError, End of File(EOF) Error, End of Line(EOL) Error,
ZeroDivisionError, TypeError, IndexError and KeyError. Complex errors are ones that occur when the
structured grammar of Python is incorrectly written, which happens when using structural grammar,
formulas, or conditions, and these include RuntimeError, LogicError, IndentationError, TypeError,
NameError, AttributeError and ImportError. On reviewing the simple and complex errors, it can be seen that
there are overlapping errors. This is because the classification into simple and complex errors was not simply
based on types of errors, but was also carried out focusing on situations where the errors occur.

206 International Journal of Advanced Culture Technology Vol.9 No.1 203-209 (2021)

Various situations where simple errors happen can be explained as follows. A SyntaxError occurs when
any Python reserved word or punctuation mark is used incorrectly, and a NameError occurs in relation to
variable names. An EOFError, which appears when the unexpected end of a file is recognized, happens
because a parenthesis was not opened and closed when using a function, and an EOLError is caused in the
case where the quotes used are an odd pair of marks when entering a string. In addition, a ZeroDivisionError
happens when a number is incorrectly divided by 0, a TypeError occurs when the data type is incorrectly
changed in an input statement, an IndexError occurs when the index range is exceeded when using a list, and
a KeyError occurs when a key that does not exist is called.

Various situations where complex errors happen can be explained as follows. A RuntimeError occurs
when a formula is declared incorrectly because the command is not executed normally. When a formula is
used incorrectly in a conditional statement or a repetitive statement, a LogicError occurs so that the program
is abnormally terminated. An IndentationError occurs when the indentation spacing between sentences is not
set properly, and a TypeError occurs when a parameter or return statement is written incorrectly when using
a function. In addition, a NameError occurs when there is an error in the name of a function or an error
happens when referring to the function in a module, and in a module, an AttributeError and an ImportError
occur due to wrong attributes and a module name, respectively.

In this paper, the distributions of error types by Python grammar category were measured to classify the
errors described above, and the contents of feedback between learners and teachers in basic software basic
course held from 2018 to 2019 at K University in Gyeonggi-do, South Korea were used. All 554 learners
who participated in the classes were non-computer majors, and the Python classes were given for sequential
learning of input/output functions, variables, operators, lists, conditional statements, repetitive statements,
functions, and modules[14]. As for the error data, the contents of those errors that were corrected by learners
through feedback from the instructor while they were practicing coding during class hours were used.

The rates of error occurrence by Python grammar category were measured as shown in Equation (1).

p(%) = (21, F) x 100 (1)

where p(%) denotes error occurrence rate, M denotes the number of students surveyed, and N denotes the
total sum of detailed errors for each error. ni denotes the number of detailed errors in each grammar in the
case of the ith student.

The distributions of errors obtained when the errors occurring in input/output functions, variables,
operators, lists, conditional statements, repetitive statements, functions, and modules input/output functions,
variables, operators, lists, conditional statements, loop statements, functions, and modules were classified
into simple and complex errors are shown in Figure 2.

100 & a1
90 —_ 82
e
£ 80 72 75 L 74 75__1‘\7'2
E 70
5 60
£ 50
2 40
2 2
5 30
E 20
10 0
& & 3 &) & &
& & &° v & & &
\\‘b\ Qc‘ (\6\ Qé} Q}Q
K © & @

Python Grammar
[C]Simple Error [] Complex Error

Figure 2. Error distribution of Python grammar

A Study on Coding Education for Non-Computer Majors Using Programming Error List 207

Simple errors occurred frequently in general in each grammar and showed an average distribution ratio of
76.14%. The input/output portion showed an error distribution ratio of 87%, which was the highest among
simple errors. This is judged to be a phenomenon that takes place because the learners were unfamiliar with
the Python language in the part of using input/output functions at the beginning of learning coding. In
addition, since simple errors happened continuously and frequently even though the content of the grammar
used for coding increased, it can be seen that care should be used when writing source codes and checking
errors.

Complex errors appeared in those lists, conditional statements, repetitive statements, functions, and
modules that use structural grammar, formulas, or conditions. A high complex error distribution ratio of 91%
was shown in the repetitive statement part, while there were no complex errors in inputs/outputs, variables,
and operators. These complex errors are related to the necessity to write a formula correctly or use functions
to fit their purposes so that the results wanted by the programmer can be output. Therefore, concrete, and
systematic algorithms should be designed in the program planning stage before writing the source code. In
addition, as the contents of the grammar become more complex, dividing blocks of code by function, or
using functions efficiently to fit their purposes is also important.

3. CODE LEARNING METHOD BASED ON REFERRING ERROR LISTS

Non-computer majors learn the basics of coding while practicing. During this time, they make various
errors, and the source code is corrected through feedback from the instructor. However, in cases where the
learner practices alone for long periods of time, there are limitations in receiving feedback from the
instructor to resolve errors. Therefore, a method for the learner to develop the ability to correct code errors
by himself/herself is desperately necessary.

Therefore, in this paper, a learning process was designed through which the learner resolves errors made
when he/she writes and executes the source code by himself/herself, referring to the lists of simple errors and
complex errors, as shown in Figure 3.

Learner

Start Coding

e

Error Message
. (¥ ireais
([YEO———
=]

SyntaxError ||

Error Check —>{ Error Revision :
L \\' / & Simple Error List
|

Complex Error List

Coding Completion Reference

Figure 3. Code learning process based on referring error lists

The designed learning process progresses as follows. The learner writes the source code for the given
problem and executes it. If there is a problem with the written source code, a code error occurs and the result
is not displayed normally, and the Python editor shows an error notification message. Although a solution to
this error can be obtained right away in cases where there is an instructor, it is difficult for a non-major
learner to find a solution when they are studying by themselves. In such cases, the learner finds the relevant
error by comparing the error contents in the simple error list and the complex error list with the content of

208 International Journal of Advanced Culture Technology Vol.9 No.1 203-209 (2021)

the error notification message. Because these error lists are based on data from previous learners, a student
can easily find out the error. The learner corrects the code based on the error information found, and if the
source code is executed normally, the learner outputs the result and completes the code design. If other error
notification messages are generated consecutively, the learner should repeatedly carry out the error list
referral method mentioned out earlier. The learning procedure for practicing coding by referring to the error
lists is as follows.

Step 1. The learner writes and runs the program.

Step 2. The learner checks the error messages generated when the code is executed.
Step 3. The learner corrects the errors generated by referring to the error lists.
Step 4. The learner completes the code design.

The learner repeats steps 1 through 4 in the coding practice process, becomes familiar with the error lists
along with program learning, and learns to match and refer to error notification messages and error lists. In
particular, learners can develop their error correction ability by themselves through the process of matching
and referring to the simple and complex errors lists classified earlier with the error notification messages
from the Python editor.

In this paper, a learning process to find and correct errors by referring to a list of errors classified into
simple and complex errors was designed. The coding learning method, which enables learners to resolve
errors by themselves, has the characteristics of eliminating the fear of coding errors felt by non-computer
majors and facilitating coding practice. In addition, unlike existing studies, the method can be useful for
learning coding in an online environment.

4. CONCLUSION

When an error happens in the coding process, hon-computer majors who are learning computer programs
for the first time receive feedback from instructors to modify the program. However, in situations where
there are long periods of time to learn online due to the recent pandemic, there are limitations in receiving
feedback from the instructor to resolve errors. Therefore, a learning method that would enable learners to
check and correct program errors by themselves is very much needed.

In this paper, the types of errors in Python, which is widely used as an educational computer language,
were described, and the distributions of error occurrences by Python grammar category were analyzed.
Based on the results of the analysis, a learning method was designed focusing on situations where errors
happen so that learners can easily refer to the errors when they learn programming by themselves. Also,
various types of errors were classified into simple errors and complex errors according to the degree of
difficulty felt by learners when they solve the errors by themselves. In addition, a learning process in which
learners can find and correct errors and carry out coding by referring to the error lists classified was
presented. Through this learning process, learners can become familiar with the program error lists and
develop the ability to correct errors by themselves in situations where there is no feedback from instructors,
such as online coding classes.

Hereafter, based on the learning process presented in this paper, concrete guidelines for solving coding
errors will be designed and applied to actual coding classes to identify the practical utility of the guidelines.

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National
Research Foundation of Korea (NRF-2015R1D1A1A01061064 and NRF-2020S1A5A8042850).
REFERENCES

[1] H. W. Jung, “A Study on the Current State of Artificial Intelligence Based Coding Technologies and the
Direction of Future Coding Education,” International Journal of Advanced Culture Technology, Vol. 8,

A Study on Coding Education for Non-Computer Majors Using Programming Error List 209

No. 3, pp. 186-191, 2020.
DOI: https://doi.org/10.17703/1JACT.2020.8.3.186

[2] J. Kim and Y. Kim, “The Analysis of Relationship between Academic Achievement Level of Concept
Learning and Error Type in Online Programming Course,” The Journal of Korean Association of
Computer Education, Vol. 17, No. 5, pp. 43-51, 2014.

[3] G. Samara, “A Practical Approach for Detecting Logical Error in Object Oriented Environment ,” World
of Computer Science and Information Technology Journal (WCSIT), Vol. 7, No. 2, pp. 10-19, 2017.

[4] W. R. Murray, "Automatic program debugging for intelligent tutoring systems,” Computational
Intelligence, Vol. 3, No. 1, pp. 1-6, February 1987.

DOI: https://doi.org/10.1111/j.1467-8640.1987.tb00169.x

[5] S. K. Kummerfeld and J. Kay, "The neglected battle fields of syntax errors,” in Proc. ACE '03:
Proceedings of the fifth Australasian conference on Computing education, pp. 105-111, 2003.

[6] J. M. Lee and K. H. Lee, “The Effects of Metaphoric Instruction on Novice’s Learnnig of C Language
Programming,” Korean Journal of Cognitive Science, Vol. 9, No. 4, pp. 75-93, 1998.

[71 H. Jang, S. Choi, S. Jun, Y. Yeom and W. Lee, “Programming Learning Supporting System based on
Error Feedback for Novices,” The Journal of Korean Association of Computer Education, Vol. 10, No. 6,
pp. 1-10, 2007.

[8] J. W. Nam and I. H. Yoo, “Development of NXC Robot Programming Supporting System Based on
Types of Programming Error,” Journal of The Korean Association of Information Education, Vol. 15,
No. 3, pp. 375 - 385, 2011.

[9] P. Koyya, Y. Lee and J. Yang, "Feedback for Programming Assignments Using Software-Metrics and
Reference Code", International Scholarly Research Notices, vol. 2013, Article ID 805963, 8 pages,
2013.

DOI: https://doi.org/10.1155/2013/805963

[10] A. J. Ko and B. A. Myers, "Development and evaluation of a model of programming errors," in Proc.
IEEE Symposium on Human Centric Computing Languages and Environments, pp. 7-14, 2003.

DOI: https://doi.org/10.1109/HCC.2003.1260196

[11] S. Krusche, M. Berisha and B. Bruegge, "Teaching Code Review Management Using Branch Based
Workflows," in Proc. 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), pp. 384-393, 2016.

DOI: https://doi.org/10.1145/2889160.2889191

[12] I. Sanders and S. Langford, "Students' perceptions of python as a first programming language at wits,"
ACM Sigcse Bulletin, Vol. 40, No. 3, 2008.

DOI: https://doi.org/10.1145/1597849.1384407

[13] Python. https://www.python.org.

[14] H. W. Jung, “Exploring the Convergence Possibility of Learner's Major Field in Software Project -
Focus on the Non-Computer Major Freshmen - The Journal of the Convergence on Culture
Technology (JCCT), Vol. 6, No. 2, pp. 263-270, 2020.

DOI: https://doi.org/10.17703/JCCT.2020.6.2.263

