• Title/Summary/Keyword: Error Reduction

Search Result 1,416, Processing Time 0.032 seconds

Performance Analysis of LR-aided ZF Receiver for MIMO Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Lattice-reduction (LR) techniques have been developed for signal detection in spatial multiplexing multiple input multiple output (MIMO) systems to obtain the largest diversity gain. Thus, an LR-assisted zero-forcing (ZF) receiver can achieve the maximum diversity gain in spatial multiplexing MIMO systems. In this paper, a simplified analysis of the achievable diversity gain is presented by fitting the channel coefficients lattice-reduced by a complex Lenstra-Lenstra-$Lov{\acute{a}}z$ (LLL) algorithm into approximated Gaussian random variables. It will be shown that the maximum diversity gain corresponding to two times the number of receive antennas can be achieved by the LR-based ZF detector. In addition, the approximated bit error rate (BER) expression is also derived. Finally, the analytical BER performance is comparatively studied with the simulated results.

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF

Reducing the PAPR of OFDM Systems by Random Variable Transformation

  • Taher, Montadar Abas;Singh, Mandeep Jit;Ismail, Mahamod Bin;Samad, Salina Abdul;Islam, Mohammad Tariqul
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.714-717
    • /
    • 2013
  • Peak power reduction techniques in orthogonal frequency division multiplexing (OFDM) has been an important subject for many researchers for over 20 years. In this letter, we propose a side-information-free technique that is based on the concept of random variable (RV) transformation. The suggested method transforms RVs into other RVs, aiming to reshape the constellation that will consequently produce OFDM symbols with a reduced peak-to-average power ratio. The proposed method has no limitation on the mapping type or the mapping order and has no significant effect on the bit error rate performance compared to other methods presented in the literature. Additionally, the computational complexity does not increase.

Discrete controller order reduction with the closed-loop performance guaranteed (폐루프시스템의 성능을 보장하는 이산제어기 차수축소)

  • 오도창;정은태;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.24-32
    • /
    • 1997
  • This paper is on a discrete controller order reduction with the closed-loop stability and performance guaranteed. to achieve this, after finding the solutionsof two lyapunov inequalities and balancing the full order controller system, we find the reudced order controlers using the balanced truncation (BT) and the balanced singular perturbation approximation (BSPA). When the solutions of the two lyapunov inequalities exist, it is shown that the resulting controllers guarantee the closed-loop stability, and .inf.-norm error bounds are derived for the closed-loop performance region for the BT and in low frequency region for the BSPA. Finally, a numerical example is given to illustrate the validity of the proposed method.

  • PDF

PAPR Reduction with a Recoverable Peak Cancellation Technique for OFDM

  • Wang, Lei;Yoon, Dong-Weon;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.571-575
    • /
    • 2008
  • Orthogonal Frequency Division Multiplexing(OFDM) is one of the most promising techniques for 4th generation communication systems. One of the main disadvantages of OFDM is the Peak to Average Power Ratio(PAPR). In this paper, a recoverable peak cancellation(RPC) technique that recovers the cancelled part for the peak-cancelled OFDM signal is introduced. Using the RPC technique, the bit error rate(BER) performance can be greatly improved and the efficiency of the PAPR reduction is nearly that of the clipping method, at a cost of slightly reducing the transmission data rate.

An Overview of Peak-to-Average Power Ratio Reduction Schemes for OFDM Signals

  • Lim, Dae-Woon;Heo, Seok-Joong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Orthogonal frequency division multiplexing (OFDM) has been adopted as a standard for various high data rate wireless communication systems due to the spectral bandwidth efficiency, robustness to frequency selective fading channels, etc. However, implementation of the OFDM system entails several difficulties. One of the major drawbacks is the high peak-to-average power ratio (PAPR), which results in intercarrier interference, high out-of-band radiation, and bit error rate performance degradation, mainly due to the nonlinearity of the high power amplifier. This paper reviews the conventional PAPR reduction schemes and their modifications for achieving the low computational complexity required for practical implementation in wireless communication systems.

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.

Active Control of Earthquake Responses using LQG/LTR Method (LQ/LTR 제어기법을 이용한 지진응답의 능동적 진동제어)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.244-250
    • /
    • 1999
  • Active vibration control method for the reduction of vibration of structures have been developed. For the application of real structures active control system that has robustness must be designed because the mathematical model incompletely described has intrinsically modeling error. In this research we propose LQG/LTR method in designing control system with robustness. A combination of acceleration feedback and model-order reduction technique is used for the application of real structures and the computation efficiency. In case of such structures as the building and the tower the inter-story relative displacements represent an important constraint in seismic design. Therefore selection method of design parameters is also proposed in order to reduce the inter-story relative displacements.

  • PDF

Noise Reduction Algorithm of Salt-and-Pepper Using Reliability-based Weighted Mean Filter (복원화소의 신뢰도 기반 가중 평균 필터를 활용한 Salt-and-Pepper 잡음 제거 알고리즘)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • Salt and pepper is a type of impulse noise. It may appear due to an error in the image transmission process and image storage memory. This noise changes the pixel value at any position in the image to 0 (in case of pepper noise) or 255 (in case of salt noise). In this paper, we present an algorithm for SAP noise reduction. The proposed method consists of three steps. In the first step, the location of the SAP noise is detected, and in the second step, the pixel value of the detected location is restored using a weighted average of the surrounding pixel values. In the last step, a reliability matrix around the reconstructed pixels is constructed, and additional correction is performed with a weighted average using this. As a result of the experiment, the proposed method appears to have similar or higher objective and subjective image quality than previous methods for almost all SAP noise ratios.

Mitigation of gap formation resulting from saw blade in single-cut osteotomy

  • Mu-Young Kim;Stanley Eunwoo Kim
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.26.1-26.6
    • /
    • 2024
  • Bone loss from the kerf of the sawblade may influence the final outcomes when employing three-dimensional-printed surgical guides. However, no studies have systematically addressed saw blade-induced bone loss. This study aims to quantify bone loss and propose a reduction guide to minimize the fracture gap. The postoperative gap tended to decrease as the amount of gap compensation increased. Osteotomy gaps can be attributed to the thickness of the saw blade, and the proposed methodology addresses this surgical error. Surgeons can proactively plan and design reduction guides with applied compensation using the method described in this study.