• Title/Summary/Keyword: Error Equation

Search Result 1,575, Processing Time 0.029 seconds

A Study of the Representation in the Elementary Mathematical Problem-Solving Process (초등 수학 문제해결 과정에 사용되는 표현 방법에 대한 연구)

  • Kim, Yu-Jung;Paik, Seok-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.85-110
    • /
    • 2005
  • The purpose of this study is to examine the characteristics of visual representation used in problem solving process and examine the representation types the students used to successfully solve the problem and focus on systematizing the visual representation method using the condition students suggest in the problems. To achieve the goal of this study, following questions have been raised. (1) what characteristic does the representation the elementary school students used in the process of solving a math problem possess? (2) what types of representation did students use in order to successfully solve elementary math problem? 240 4th graders attending J Elementary School located in Seoul participated in this study. Qualitative methodology was used for data analysis, and the analysis suggested representation method the students use in problem solving process and then suggested the representation that can successfully solve five different problems. The results of the study as follow. First, the students are not familiar with representing with various methods in the problem solving process. Students tend to solve the problem using equations rather than drawing a diagram when they can not find a word that gives a hint to draw a diagram. The method students used to restate the problem was mostly rewriting the problem, and they could not utilize a table that is essential in solving the problem. Thus, various errors were found. Students did not simplify the complicated problem to find the pattern to solve the problem. Second, the image and strategy created as the problem was read and the affected greatly in solving the problem. The first image created as the problem was read made students to draw different diagram and make them choose different strategies. The study showed the importance of first image by most of the students who do not pass the trial and error step and use the strategy they chose first. Third, the students who successfully solved the problems do not solely depend on the equation but put them in the form which information are decoded. They do not write difficult equation that they can not solve, but put them into a simplified equation that know to solve the problem. On fraction problems, they draw a diagram to solve the problem without calculation, Fourth, the students who. successfully solved the problem drew clear diagram that can be understood with intuition. By representing visually, unnecessary information were omitted and used simple image were drawn using symbol or lines, and to clarify the relationship between the information, numeric explanation was added. In addition, they restricted use of complicated motion line and dividing line, proper noun in the word problems were not changed into abbreviation or symbols to clearly restate the problem. Adding additional information was useful source in solving the problem.

  • PDF

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

Respiratory air flow transducer calibration technique for forced vital capacity test (노력성 폐활량검사시 호흡기류센서의 보정기법)

  • Cha, Eun-Jong;Lee, In-Kwang;Jang, Jong-Chan;Kim, Seong-Sik;Lee, Su-Ok;Jung, Jae-Kwan;Park, Kyung-Soon;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1082-1090
    • /
    • 2009
  • Peak expiratory flow rate(PEF) is a very important diagnostic parameter obtained from the forced vital capacity(FVC) test. The expiratory flow rate increases during the short initial time period and may cause measurement error in PEF particularly due to non-ideal dynamic characteristic of the transducer. The present study evaluated the initial rise slope($S_r$) on the flow rate signal to compensate the transducer output data. The 26 standard signals recommended by the American Thoracic Society(ATS) were generated and flown through the velocity-type respiratory air flow transducer with simultaneously acquiring the transducer output signal. Most PEF and the corresponding output($N_{PEF}$) were well fitted into a quadratic equation with a high enough correlation coefficient of 0.9997. But only two(ATS#2 and 26) signals resulted significant deviation of $N_{PEF}$ with relative errors>10%. The relationship between the relative error in $N_{PEF}$ and $S_r$ was found to be linear, based on which $N_{PEF}$ data were compensated. As a result, the 99% confidence interval of PEF error was turned out to be approximately 2.5%, which was less than a quarter of the upper limit of 10% recommended by ATS. Therefore, the present compensation technique was proved to be very accurate, complying the international standards of ATS, which would be useful to calibrate respiratory air flow transducers.

The Effect of Geometric Factors When Measuring Standard Count for Radioactive Iodine Thyroid Uptake Rate (표준계수 측정 시 기하학적 요인이 방사성 요오드 갑상선 섭취율에 미치는 영향)

  • Oh, Joo Young;Kim, Jung Yul;Oh, Ki Baek;Oh, Shin Hyun;Kim, Jae Sam;Lee, Chang Ho;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • Objectives: It is certain that Radioactive iodine thyroid uptake(RAIU) rate should be measured with the standard counts considering the thyroid gland depth in enlarged thyroid patients for the variation from geometric factors. The purpose of this paper is to consider the effects of geometric factors according to detector to source distance and the effective thyroid depth on RAIU rate with experiment test. Materials and Methods: I-131 370 kBq ($10{\mu}Ci$) point source was measured by Captus-3000 thyroid uptake system (Capintec, NJ, USA) with a change Detector-Source Distance from 20 cm to 30 cm at an interval of 1 cm. And we changed the Neck phantom surface-Source Depth in the phantom with 1 cm, 2 cm, 5 cm using the neck phantom in order to reproduce the effective thyroid depth. Results: Every experimental group follows power curve as inverse square curve ($$R2{\geq_-}0.915$$). The average count rates in the case not using a phantom and the every case applied the effective thyroid depth using a phantom was not identical each other. There was significant fluctuations upon the effective thyroid depths applied the effective thyroid depth above 1 cm in $364.4 keV{\pm}10%$ energy ROI (p<0.01). There was not significant difference between the count rates of 1 cm and 2 cm in $364.4keV{\pm}20%$ and $637.1keV{\pm}6.2%$ (p=0.354, p=0.397). In assumed RAIU rate from regression equation, $364.4keV{\pm}20%$ was lower difference than $364.4keV{\pm}10%$ as 6.42% and 5.09% per 1 cm. Every change of count rate upon depth appears decreased line on Linear Regression, but the case of $284.3keV{\pm}10%$ increased only. And also, The graphs of coefficient of variation upon depth increased as straight line on every experimental group. Conclusion: The result appears that application of $364.4keV{\pm}20%$ energy ROI is more suitable for reducing error from the effective thyroid depth. And also, we can estimate the error of 20 cm should be highly reduced than 30 cm for Inverse Square Law. Therefore, If there is not information of the thyroid depth, it is considered that the error from thyroid depth can reduce through set up energy ROIs for $364.4keV{\pm}20%$, and increase Detector-Source Distances.

  • PDF

Predicting the Progression of Chronic Renal Failure using Serum Creatinine factored for Height (소아 만성신부전의 진행 예측에 관한 연구)

  • Kim, Kyo-Sun;We, Harmon
    • Childhood Kidney Diseases
    • /
    • v.4 no.2
    • /
    • pp.144-153
    • /
    • 2000
  • Purpose : Effects to predict tile progression of chronic renal failure (CRF) in children, using mathematical models based on transformations of serum creatinine (Scr) concentration, have failed. Error may be introduced by age-related variations in creatinine production rate. Height (Ht) is a reliable reference for creatinine production in children. Thus, Scr, factored for Ht, could provide a more accurate predictive model. We examined this hypothesis. Methods : The progression of of was detected in 63 children who proceeded to end-stage renal disease. Derivatives of Scr, including 1/Scr, log Scr & Ht/Scr, were defined fir the period Scr was between 2 and 5 mg/dl. Regression equation were used to predict the time, in months, to Scr > 10 mg/dl. The prediction error (PE) was defined as the predicted time minus actual time for each Scr transformation. Result : The PE for Ht/Scr was lower than the PE for either 1/Scr or log Scr (median: -0.01, -2.0 & +10.6 mos respectively; P<0.0001). For children with congenital renal diseases, the PE for Ht/Scr was also lower than for the other two transformations (median: -1.2, -3.2 & +8.2 mos respectively; P<0.0001). However, the PEs for children with glomerular diseases was not as clearly different (median: +0.9, +0.5 & +9.9 respectively). In children < 13 yrs, PE for Ht/Scr was tile lowest, while in older children, 1/Scr provided the lowest PE but not significantly different from that for Ht/Scr. The logarithmic transformation tended to predict a slower progression of CRF than actually occurred. Conclusion : Scr, floored for Ht, appears to be a useful model to predict the rate of progression of CRF, particularly in the prepubertal child with congenital renal disease.

  • PDF

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

A study on the estimation of bubble size distribution using an acoustic inversion method (음향 역산법을 이용한 기포의 크기 분포 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.151-162
    • /
    • 2020
  • This paper presents an acoustic inversion method for estimating the bubble size distribution. The estimation error of the attenuation coefficient represented by a Fredholm integral equation of the first kind is defined as an objective function, and an optimal solution is found by applying the Levenberg-Marquardt (LM) method. In order to validate the effectiveness of the inversion method, numerical simulations using two types of bubble distribution are performed. In addition, a series of experiments are carried out in a water tank (1.0 m × 0.54 m × 0.6 m), using bubbles generated by three different generators. Images of the distributed bubbles are obtained by a high-speed camera, and the insertion losses of the bubble layer are measured using a source and a hydrophone. The image is post-processed to glance a distribution characteristics of each bubble generator. Finally, the size distribution of bubbles is estimated by applying the inversion method to the measured insertion loss. From the inversion results, it was observed that the number of bubbles increases exponentially as the bubble size decreases, and then increases again after the local peak at 70 ㎛ - 120 ㎛.

A Design for Realtime Monitoring System and Data Analysis Verification TA to Improve the Manufacturing Process Using HW-SW Integrated Framework (HW-SW 통합 프레임워크를 활용한 제조공정 개선을 위한 실시간 모니터링 시스템과 데이터 분석검증 TA설계)

  • Kim, Jae Chun;Jin, Seon A;Park, Young Hee;Noh, Seong Yeo;Lee, Hyun Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.357-370
    • /
    • 2015
  • Massive data occurred in a manufacturing place is able to fulfill very important roll to improve the manufacturing process. Domestic manufacturing business has been making an multilateral effort to react the change of manufacturing circumstance, but it undergoes many difficulties due to technical weakness. Coatings is a type of paint. It protect products by forming a film layer on the products and assigns various properties to those. The research of coatings is one of the fields studied actively in the polymer industry. The importance of the coatings in various industries is more increased. However, the industry still performs a mixing process in dependence on operator's experiences. In this paper, we propose a design for realtime monitoring system and data analysis verification TA to improve the manufacturing process using HW-SW integrated framework. Analysis results from the proposed framework are able to improve the coatings formulation process by collecting more quantitative reference data for work and providing it to work place. In particular, the framework may reduce the deterioration and loss cost which are caused by absence of a standard data as a accurate formulation criteria. It also may suggest a counterplan regarding errors which can be occurred in the future by deriving a standard calibration equation from the analysis using R and Design of Experiments about an error data generated in the mixing step.

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.