DOI QR코드

DOI QR Code

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation

시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법

  • Lee, Jae Seong (Department of Horticulture and Breeding, College of Life Science and Biotechnology, Andong National University) ;
  • Shin, Jong Hwa (Department of Horticulture and Breeding, College of Life Science and Biotechnology, Andong National University)
  • 이재성 (국립안동대학교 대학원 원예육종학과) ;
  • 신종화 (국립안동대학교 생명과학대학 원예육종학과)
  • Received : 2022.09.16
  • Accepted : 2022.10.19
  • Published : 2022.10.31

Abstract

Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

식물의 생장과 발달은 지하부 환경에도 영향을 받으므로 근권 환경의 변수들을 관수전략의 수립에 고려하는 것이 매우 중요하다. 본 연구의 목적은 수분이동 특성이 다른 2종류의 암면배지에서 FDR센서를 활용하여 체적함수율(VWC)과 Bulk EC(ECb) 그리고 식물의 뿌리가 이용하는 Pore EC(ECp)에 대한 관계를 분석하고, 이를 활용하여 이용가능한 근권 환경 데이터 수집과 보정 방법을 확립하고자 진행되었다. 실험은 물리적 특성이 다른 2종류의 암면배지(RW1, RW2)를 사용하였다. FDR 센서를 활용하여 함수율(MC)과 ECb를 측정하였으며, ECp는 체적함수율(VWC) 10-100%에서 배지 중앙부위에 일회용 주사기를 이용하여 배지 잔류 양액을 추출 후 측정하였다. 이후 2종류 배지(RW1, RW2)에 서로 다른 농도(증류수, 0.5-5.0)의 배양액을 각 체적함수율 범위(0-100%)로 공급하여 ECb와 ECp를 측정하였다. RW1, RW2 배지에서 ECb와 ECp의 관계는 3차 다항식에 가장 적합하였다. 체적함수율(VWC) 범위 3차 다항식에 따른 ECb와 ECp의 관계는 낮은 체적함수율(VWC) 10-60% 구간에서 큰 오차율을 보였다. 체적함수율(VWC)범위에 따른 센서 측정값(ECb) 및 식물 뿌리가 이용하는(ECp)의 상관관계는 2종류 배지(RW1, RW2) 모두 Paraboloid 식에서 결정계수(R2) 값이 각각 0.936, 0.947로 가장 높았다.

Keywords

Acknowledgement

본 연구는 한국스마트팜 R&D재단(과제번호: 421001-03)의 지원에 의해 이루어진 것임.

References

  1. Amente G., J.M. Baker, and C.F. Reece 2000, Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Sci Soc Am J 64:1931-1939. doi:10.2136/sssaj2000.6461931x
  2. Balendonck J., M.A. Bruins, M.R. Wattimena, W. Voogt, and A. Huys 2005, WET-sensor pore water EC calibration for three horticultural soils. Acta Hortic 691:789-795. doi:10.17660/ActaHortic.2005.691.97
  3. Banon S., S. Alvarez, D. Banon, M.F. Ortuno, and M.J. SanchezBlanco 2021, Assessment of soil salinity indexes using electrical conductivity sensors. Sci Hortic 285:110171. doi:10.1016/j.scienta.2021.110171
  4. Bayer A., I. Mahbub, M. Chappell, J. Ruter, and M.W. van Iersel 2013, Water use and growth of Hibiscus acetosella 'Panama Red'grown with a soil moisture sensor-controlled irrigation system. HortScience 48:980-987. doi:10.21273/HORTSCI.48.8.980
  5. Corwin D.L., and S.M. Lesch 2005, Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11-43. doi:10.1016/j.compag.2004.10.005
  6. Havrda J., E. Gregorova, and F. Oujiri 1989, Electric-conductivity of water-saturated porcelain mixture.1. Method for determining electric-conductivity and its dependence on moisture-content. Silikaty 33:367-373.
  7. Malicki M.A., and R.T. Walczak 1999, Evaluating soil salinity status from bulk electrical conductivity and permittivity. Eur J Soil Sci 50:505-514. doi:10.1046/j.1365-2389.1999.00245.x
  8. Mualem Y., and S.P. Friedman 1991, Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resour Res 27:2771-2777. doi:10.1029/91WR01095
  9. Nelson P.V., and W.C. Fonteno 1991, Physical analysis of rockwool slabs and effects of fiber orientation, irrigation frequency and propagation technique on chrysanthemum production. J Plant Nutr 14:853-866. doi:10.1080/01904169109364247
  10. Nemali K.S., and M.W. van Iersel 2008, Physiological responses to diferent substrate water contents: screening for high water-use efficiency in bedding plants. J Am Soc Hortic Sci 133:333-340. doi:10.21273/JASHS.133.3.333
  11. Nesmith D.S., D.C. Bridges, and J.C. Barbour 1992, Bell pepper responses to root restriction. J Plant Nutr 15:2763-2776. doi:10.1080/01904169209364507
  12. Peter A., R. Ferrarezi, P. Thomas, and M. van Iersel 2011, In situ measurements of the electrical conductivity (EC) of substrates: The relationship between bulk EC, pore water EC and substrate water content. HortScience 46(suppl):198-199.
  13. Risler P.D., J.M. Wraith, and H.M. Gaber 1996, Solute transport under transient flow conditions estimated using time dominant reflectometry. Soil Sci Soc Am J 60:1297-1305. doi:10.2136/sssaj1996.03615995006000050003x
  14. Shani U., A. Ben-Gal, E. Tripler, and L.M. Dudley 2007, Plant response to the soil environment: an analytical model integrating yield, water, soil type, and salinity. Water Resour Res 43:W08418. doi:10.1029/2006WR005313
  15. Van der Laan M., R.J. Stirzaker, J.G. Annandale, K.L. Bristow, and C.C. Du Preez 2011, Interpretation of electrical conductivity measurements from ceramic suction cups, wetting front detectors and ECH2O-TE sensors. S Afr J Plant Soil 28:244-247.
  16. Van Loon W.K.P., E. Perfect, P.H. Groenevelt, and B.D. Kay 1991, Application of dispersion theory to time domain reflectometry in soils. Transp Porous Media 6:391-406. doi:10.1007/BF00136348