DOI QR코드

DOI QR Code

A study on the estimation of bubble size distribution using an acoustic inversion method

음향 역산법을 이용한 기포의 크기 분포 추정 연구

  • 박철수 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정소원 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김건도 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 문일성 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 임근태 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2020.03.16
  • Accepted : 2020.04.08
  • Published : 2020.05.31

Abstract

This paper presents an acoustic inversion method for estimating the bubble size distribution. The estimation error of the attenuation coefficient represented by a Fredholm integral equation of the first kind is defined as an objective function, and an optimal solution is found by applying the Levenberg-Marquardt (LM) method. In order to validate the effectiveness of the inversion method, numerical simulations using two types of bubble distribution are performed. In addition, a series of experiments are carried out in a water tank (1.0 m × 0.54 m × 0.6 m), using bubbles generated by three different generators. Images of the distributed bubbles are obtained by a high-speed camera, and the insertion losses of the bubble layer are measured using a source and a hydrophone. The image is post-processed to glance a distribution characteristics of each bubble generator. Finally, the size distribution of bubbles is estimated by applying the inversion method to the measured insertion loss. From the inversion results, it was observed that the number of bubbles increases exponentially as the bubble size decreases, and then increases again after the local peak at 70 ㎛ - 120 ㎛.

본 논문에서는 음향 역산법을 이용한 기포의 크기 분포 추정 기법을 제시하였다. 제 1종 Fredholm 적분방정식으로 표현된 감쇠계수의 추정오차를 목적함수로 정의하였고, 최적해를 구하기 위해 Levenberg-Marquardt(LM)기법을 적용하였다. 두 가지의 기포 분포에 대한 수치 시뮬레이션을 통해 제안된 역산 기법의 유용성을 검증하였다. 세 종류의 기포발생기를 이용하여 사각 수조(1.0 m × 0.54 m × 0.6 m)에서 기포 실험을 수행하였다. 고속카메라 촬영을 통해 기포의 분포 이미지를 획득하였고, 음원과 수중청음기를 이용하여 기포층의 주파수별 삽입손실(insertion loss)을 계측하였다. 촬영된 이미지는 후처리를 통해 기포 발생기별 기포 분포 특성을 파악하는데 활용하였고, 계측된 삽입손실에 역산 기법을 적용하여 기포의 크기 분포를 추정하였다. 음향 역산결과로부터 기포의 크기가 작아짐에 따라 기포 개수는 지수적으로 증가하며, 70 ㎛ ~ 120 ㎛의 국부 피크를 지난 후 다시 증가하는 경향성을 확인하였다.

Keywords

References

  1. C. S. Clay and H. Medwin, Acoustical Oceanography: Principles and Applications (John Wiley & Sons, New York, 1977), pp. 461-475.
  2. B. Wursig, C. R. Greene, and T. A. Jefferson, "Development of an air bubble curtain to reduce underwater noise of percussive piling," Marine Environmental Research, 49, 79-93 (2000). https://doi.org/10.1016/S0141-1136(99)00050-1
  3. J. C. Kim, B. H. Heo, and D. S. Cho, "Noise reduction effect of an air bubble layer on an infinite flat plate considering the noise of multi-bubbles" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 1222-1230 (2009). https://doi.org/10.5050/KSNVN.2009.19.11.1222
  4. W. S. Ross, P. J. Lee, S. E. Heiney, and J. V. Young, "Mitigating seismic noise with an acoustic blankerthe promise and the challenge," The Leading Edge, March, 24, 303-313 (2005). https://doi.org/10.1190/1.1895317
  5. S. N. Domenico, "Acoustic wave propagation in airbubble curtains in water- Part I: History and theory," Geophysics, 47, 345-353 (1982). https://doi.org/10.1190/1.1441340
  6. J. Wu, "Bubble population and spectra in near-surface ocean: Summary and review of field measurements," J. Geophysical Research 86, 457-463 (1981). https://doi.org/10.1029/JC086iC01p00457
  7. J. C. Novarini, R. S. Keiffer, and G. V. Norton, "A model for variations in the range and depth dependence of the sound speed and attenuation induced by bubble clouds under wind-driven sea surfaces," IEEE J. Oceanic Eng. 23, 423-438 (1998). https://doi.org/10.1109/48.725236
  8. H. Medwin, "Acoustical determination of bubble-size spectra," J. Acoust. Soc. Am. 62, 1041-1044 (1977). https://doi.org/10.1121/1.381617
  9. K. Commander and E. Moritz, "Off-resonance contributions to acoustical bubble spectra," J. Acoust. Soc. Am. 85, 2665-2669 (1989). https://doi.org/10.1121/1.397763
  10. K. W. Commander and R. J. McDonald, "Finite-element solution of the inverse problem in bubble swarm acostics," J. Acoust. Soc. Am. 89, 592-597 (1991). https://doi.org/10.1121/1.400671
  11. J. W. Caruthers, P. A. Elmore, J. C. Novarini, and R. R. Goodman, "An iterative approach for approximating bubble distributions from attenuation measurements," J. Acoust. Soc. Am. 106, 185-189 (1999). https://doi.org/10.1121/1.427047
  12. D. Rajan, An inverse method for obtaining the attenuation profile and small variations in the sound speed and density profiles of the ocean bottom, (Ph.D. thesis, MIT, 1985).
  13. P. Gerstoft, "Inversion of seimoacoustic data using genetic algorithms and a posteriori probability distributions," J. Acoust. Soc. Am. 95, 770-782 (1994). https://doi.org/10.1121/1.408387
  14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 2007), Chap. 15.5.
  15. M. Cui, Y. Zhao, B. Xu, and X. Gao, "A new approach for determining damping factors in Levenberg-Marquardt algorithms for solving an inverse heat conduction problem," Int. J. Heat and Mass Transfer 107, 747-754 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.101
  16. F. D. Nunno, F. A. Pereira, M. Miozzi, F. Granata, R. Gargano, G. de Marianis, and F. D. Felice, "Air bubble size and velocity measurement in a vertical plunging jet using a volumetric shadowgraphy technique," Proc. AMT19, 1-9 (2019).
  17. F. Macintyre, "On reconciling optical and acoustical bubble spectra in the mixed layer," in Handbook of Ocean Whitecaps, edited by E. C. Monohan and G. MacNiocaill (Reidel, New York, 1986). 75-94.