• Title/Summary/Keyword: Equivalent linearization method

Search Result 45, Processing Time 0.022 seconds

On the limit cycles of aeroelastic systems with quadratic nonlinearities

  • Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Limit cycle oscillations of a two-dimensional airfoil with quadratic and cubic pitching nonlinearities are investigated. The equivalent stiffness of the pitching stiffness is obtained by combining the linearization and harmonic balance method. With the equivalent stiffness, the equivalent linearization method for nonlinear flutter analysis is generalized to address aeroelastic system with quadratic nonlinearity. Numerical example shows that good approximation of the limit cycle can be obtained by the generalized method. Furthermore, the proposed method is capable of revealing the unsymmetry of the limit cycle; however the ordinary equivalent linearization method fails to do so.

Derivation of Linearized Dynamic Equations of Motion for HexaSlide Type Parallel Manipulators (6 자유도 HexaSlide 형 병렬기구의 선형화된 운동방정식 유도)

  • Kim, Jong-Phil;Ryu, Je-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.743-750
    • /
    • 2000
  • This paper presents an equivalent linearization method and application to the equations of motion of a 6 degree-of-freedom PRRS HexaSlide type parallel manipulators which are characterized as the architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. Since dynamic equations of parallel manipulators are complicated and highly nonlinear, control bandwidth, adjustable control gain as well as vibration characteristics cannot be easily found. The proposed equivalent linearization method can be applied over specified workspace as well as on a path of mobile platform. Through an equivalent linearization method, one can easily get a simple linear dynamic model. This linearized dynamic model may be utilized in a simplified computed torque control strategy.

  • PDF

Linearization of Nonlinear Random Vibration Beam by Equivalent Energy Method (비선형 불규칙 진동 보의 등가에너지법에 의한 선형화)

  • Lee, Sin-Young;Cai, G.Q.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Nonlinear dynamic system under random excitation was analyzed by using stochastic method. A linearization method was used in order to linearize non-linear structural characteristics but the parametric excitation was used as it was given. An equivalent energy method which equalizes the expectation value of energy of the original nonlinear system and that of quasi-linearized system was proposed. Ito's differential rule was applied to obtain steady state moments. Quasi-linearization coefficients can be obtained the iterative calculation of linearization scheme and steady state moments. Monte Carlo simulation was used to verify the results of the proposed method. Nonlinear vibration of a slender beam was analyzed in this research. The analysis results were compared with Monte Carlo simulation result and showed good agreement. As the spectral density of the given excitation increased, the analysis results showed the better agreement with Monte Carlo simulation.

Analysis of Random Ship Rolling Using Partial Stochastic Linearization (통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1995
  • In order to analyze the rolling motion of a ship in random beam waves we use the partial stochastic linearization method. The quadratic damping and the nonlinear restoring moments given by the odd polynomials up to the 11th order are added to a single degree of freedom linear equation of roll motion. The irregular excitation moment is assumed to be the Gaussian white noise. The statistical characteristics of the response by the partial stochastic linearization method is compared with results by the equivalent linearization method and Monte Carlo simulation. It is fecund that the partial stochastic linearization method is not necessarily superior to the equivalent linearization method.

  • PDF

An equivalent linearization method for nonlinear systems under nonstationary random excitations using orthogonal functions

  • Younespour, Amir;Cheng, Shaohong;Ghaffarzadeh, Hosein
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.139-149
    • /
    • 2018
  • Many practical engineering problems are associated with nonlinear systems subjected to nonstationary random excitations. Equivalent linearization methods are commonly used to seek for approximate solutions to this kind of problems. Compared to various approaches developed in the frequency and mixed time-frequency domains, though directly solving the system equation of motion in the time domain would improve computation efficiency, only limited studies are available. Considering the fact that the orthogonal functions have been widely used to effectively improve the accuracy of the approximated responses and reduce the computational cost in various engineering applications, an orthogonal-function-based equivalent linearization method in the time domain has been proposed in the current paper for nonlinear systems subjected to nonstationary random excitations. In the numerical examples, the proposed approach is applied to a SDOF system with a set-up spring and a SDOF Duffing oscillator subjected to stationary and nonstationary excitations. In addition, its applicability to nonlinear MDOF systems is examined by a 3DOF Duffing system subjected to nonstationary excitation. Results show that the proposed method can accurately predict the nonlinear system response and the formulation of the proposed approach allows it to be capable of handling any general type of nonstationary random excitations, such as the seismic load.

Seismic Capacity Required for the Safety Limit Design of High-rise RC Buildings under Long-period Ground Motions in Osaka, JAPAN and its Estimation Based on the Equivalent Linearization Method

  • Sanada, Yasushi;Yoshida, Hiroki;Awano, Masayuki
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.315-323
    • /
    • 2020
  • In June 2016, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) in Japan delivered countermeasures against long-period ground motions caused by strong earthquakes along the Nankai trough. However, the countermeasures do not cover high-rise buildings equal to or shorter than 60 m in height, which do not require earthquake response analyses in the seismic design. Hence, in the present study, earthquake response analyses for such high-rise reinforced concrete (RC) buildings were performed under artificial ground motions assumed in the OS1 and OS2 regions to determine the base shear coefficients that satisfy a given safety demand. Furthermore, the results from the earthquake response analyses were estimated by the authors' proposed method based on the equivalent linearization method, showing good agreement and inspiring suggestions for more accurate and simplified estimations.

Statistical Analysis of Random Ship Rolling Using Equivalent Linearization Method (등가선형화방법을 이용한 선체의 불규칙 횡동요 운동의 통계적 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.39-45
    • /
    • 1993
  • In order to analyze the rolling motion of a ship in random beam waves we have used the equivalent linearization method. The quadratic nonlinear damping, the cubic and quintic nonlinear restoring moments were added to a single degree of freedom linear equation of roll motion. The irregular excitation moment was assumed to be the Gaussian white noise. The statistical characteristic of the response by the equivalent linearization method was compared with the simulation result.

  • PDF

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang;Zhu, Songye
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.15-38
    • /
    • 2018
  • Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.