• Title/Summary/Keyword: Equilibrium finding

Search Result 132, Processing Time 0.025 seconds

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running (달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

A Nonlinear Programming Formulation for the Topological Structural Optimization (구조체의 위상학적 최적화를 위한 비선형 프로그래밍)

  • 박재형;이리형
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 1996
  • The focus of this study is on the problem of the design of structure of undetermined topology. This problem has been regarded as being the most challenging of structural optimization problems, because of the difficulty of allowing topology to change. Conventional approaches break down when element sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear programming formulation of the topology problem is presented. Its main feature is the ability to account for topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding the equilibrium equations as equality constraints in the optimization problem. Although the formulation is general, two dimensional plane elasticity examples are presented. The design problem is to find minimum weight of a plane structure of fixed geometry but variable topology, subject to constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a locally minimal weight.

  • PDF

A Study on the Shape-Decision Technique of Membrane Structures According to the Design Process and Shape Analysis (건축 설계프로세스와 형상해석을 통한 막 구조물의 형상결정 방안에 관한 연구)

  • Park, Sun-Woo;Kim, Seung-Deog;Shon, Su-Deok;Jeong, Eul-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.115-124
    • /
    • 2007
  • The initial shape is arrived at by a self-formation process, which accomplishes a form in the natural world, or is determined analytically by considering the equilibrium of initial stress only. Therefore, the self-formation process, which accomplishes a form in the natural world is grasped and the types of modeling techniques available to find the shapes of soft structures are well investigated and classified. To establish a form-finding modeling techniques, the models of string, soap film, fabric, rubber, plaster, and etc. are used. These modeling techniques can be used as a method of understanding the characteristics of structures when the material of model shows similar characteristics. Generally, the model test confirms the structure based on numerical analysis, at the same time it is important preceding process to develop such a program. With the above process, the relationship between model test and numerical analysis becomes a feedback process. Therefore, in this study, two examples which have been accomplished from such a technique are investigated and considered according to modeling process.

  • PDF

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

An Analysis of Balassa-Samuelson Effect by Panel Cointegration Test (패널공적분검정을 통한 발라사-사무엘슨 효과 분석)

  • Choi, Yong-Jae
    • International Area Studies Review
    • /
    • v.22 no.3
    • /
    • pp.67-84
    • /
    • 2018
  • The purpose of this paper is to investigate the Balassa-Samuelson effect that real exchange rate could deviate from its long-run equilibrium. To analyze this effect, I estimated the long-run relationship between real exchange and productivity using the dynamic panel ordinary least square(DOLS) and panel error correction model(ECM) after conducting the unit root and cointegration test. The results show that all variables except for the real exchange rate have the unit root. Then I conducted the cointegration test to find out whether there exist the stable long-run relationships. The results show that the variables are cointegrated and significant statistically. The DOLS and ECM methods are used to estimate the coefficient of the cointegrated variables. The major finding are that the estimates are statistically significant and that they show the same sign as the economic theory predicts.

The Effects of COVID-19 Diffusion in the Korean Economy: Using SIR-based Macro-Epidemiological Model (코로나19 확산이 거시경제에 미치는 영향 분석: SIR 기반의 거시역학 모형을 중심으로)

  • Choi, Bongseok;Park, Hojeong
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.27-48
    • /
    • 2021
  • We extend and modify the canonical epidemiology model of Eichenbaum, Rebelo and Trabandt (2020) to investigate the general equilibrium effects of COVID-19 spread in the Korean economy when vaccine, treatment and social distancing are available. Particularly, we develop a SIR-macro model which considers possibility of moral inattention of the overconfident agents through which people is more likely to be infected. Our model implies that people's decision to cut back on consumption and work reduces the severity of the epidemic and thus exacerbate the size of the economic recession caused by the epidemic. Another finding is that the average 13 weeks to develop the vaccine and treatment will lead to 2% drop of consumption.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Enhancing the Stability of Slopes Located below Roads, Based on the Case of Collapse at the Buk-sil Site, Jeongseon Area, Gangwon Province (강원도 정선지역 북실지구 깎기비탈면 붕괴 사례를 통한 도로 하부 비탈면 안정성 확보에 관한 고찰)

  • Kim, Hong-Gyun;Bae, Sang-Woo;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Slopes are commonly formed both above and below roads located in mountainous terrain and along riversides. The Buk-sil site, a cut slope formed below the road, collapsed in October, 2010. A field investigation determined the causes of failure as improper drainage of valley water from the slope above the road and direct seepage of road-surface water. These factors may have accelerated the collapse via complex interaction between water and sub-surface structures such as bedding. Projection analysis of the site showed the possible involvement of plane, wedge, and toppling failure. Safety factors calculated by Limit Equilibrium Analysis for plane and wedge failure were below the standard for wet conditions. The wetness index, analyzed using topographic factors of the study area, was 9.0-10.5, which is high compared with the values calculated for nearby areas. This finding indicates a high concentration of water flow. We consider that water-flow control on the upper road is crucial for enhancing slope stability at the Buk-sil site.