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A Nonlinear Programming Formulation for
the Topological Structural Optimization
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Abstract

The focus of this study is on the problem of the design of structure of undetermined topology. This
problem has been regarded as being the most challenging of structural optimization problems, because
of the difficulty of allowing topology to change. Conventional approaches break down when element
sizes approach to zero, due to stiffness matrix singularity. In this study, a novel nonlinear program-
ming formulation of the topology problem is presented. Its main feature is the ability to account for
topology variation through zero element sizes. Stiffness matrix singularity is avoided by embedding
the equilibrium equations as equality constraints in the optimization problem. Although the formu-
lation is general, two dimensional plane elasticity examples are presented. The design problem is to
find minimum weight of a plane structure of fixed geometry but variable topology, subject to
constraints on stress and displacement. Variables are thicknesses of finite elements, and are permitted
to assume zero sizes. The examples demonstrate that the formulation is effective for finding at least a
locally minimal weight.

Keywords : topology, opfirrlization, nonlinear programming formulation (NLP), hierarchical method,

simultaneous method, stiffness matrix singularity, SQP
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1. Introduction

The problem of determining the optimal top-
ology of structures modeled by finite elements
is addressed. The problem is defined as follow-
s: given a structure with fixed nodal locations
and a list of possible element incidences (the
ground structure), and given upper and lower
bounds on displacements and stresses arising
from loading condition, find the subset of ele-
ments, and corresponding sizes, which minimiz
e some function of the design variables, The
design problem then includes configurational
as well as sizing decisions. Examples of design
variables include bar cross-sectional area, plate
thickness, and beam moment of inertia.

In principle, the topological nature of the
problem can be molded by introducing binary
variables which represent the absence or pres-
ence of an element. The resulting problem
then belongs to the class of mixed-integer non-
linear programming problems (MINLP). This
class of problems can be solved in principle by
" or the

Quter Approximation Method of Duran and

Generalized Benders Decomposition’

Grossmann.” In general neither of the two met
hods can guarantee a global optimum for prob-

lems in which the nonlinear programming prob-

lems (NLP) created by relaxing the integrality
constraints is nonconvex. Since this is the case
in general for structural optimization problems
{e.g.[14]), there is no guarantee that such
methods will produce a global optimum. Mot-
ivated by the complexity of such approaches,
we present a nonlinear programming formu-
lation of the problem which, while not guaran-
teeing global optimality, does avoid the use of
integer variables, thereby greatly reducing the
complexity of the problem. The formulation is
based on simultaneous analysis and design, in
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which behavioral constraints are embedded as
equality constraints in the optimization model,
in contrast to the conventional hierarchical for-
mulation, in which state variables are eliminat-
ed from the constraints. In section 2, we shall
see that this allows deletion of elements as req
uired by topological optimization,

Our development addresses weight minimiz-
ation of (possibly) inhomogeneous plate struc-
ture subject to stress, displacement; however,
the topological formulation for other structur-
es discretized by finite elements and other con-
straints types is possible and follows a similar
development. We assume the optimization
problem is solved by projected Lagrangian tec-
hniques,” which require at least zero- (values
of objective and constraints) and first- (objec-
tive gradient and constraint Jacobian) order
information to construct a linearly-constrained
subproblem, the solution of which determines
a search diréction. For example, the popular
sequential quadratic programming (SQP) al-
gorithm uses a quadratic programming subprob-
lem to determine the search direction.

The obvious approach to solving topological
optimization problems of allowing zero lower
bounds on the size of elements breaks down
with a conventional hierarchical formulation, i.
e., a formulation which eliminates state vari-
ables (e.g. displacements, stress) from the
model by solving the equilibrium equations at
each optimization iteration. In this formu-
lation, an analysis is performed to provide
zero-order information for constraints, and sen-
sitivity information is computed based on the
analysis, yielding first-order information, The
results are then used to construct a linearly-
constrained subproblem, the solution of which
is used to find a new search direction, Conse-
quently, the number of optimization variables
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is equal to the number of design variables, and
the constraints are limited to those dictating
design, The resulting Jacobian and Hessian
matrices are small and dense. If critical el-
ement sizes assume zero value (as desired in
topological optimization), stiffness matrix sin-
gularity can ensue, and the algorithm termin-
ates at a suboptimal solution. The simple fix of
altering the structural model as an element
size reaches a small value e 1s not satisfactory:
if e is too large, the decision to alter the model
by dropping an element may be premature
(which is important since the element can not
be recovered, since it is not contained within
the model) ; if € is too small, the resulting stif-
fness matrix may be ill-conditioned, leading to
poor calculated displacements and stresses
(which can mislead the optimization).

On the other hand, the simultaneous formu-
lation includes the equilibrium equations as
equality constraints, and requires only their
evaluation and not their solution at each iter-
ation, Its use results in a larger number of con-
straints and variables, which now include state
variables as well as design variables as unknow
ns. Even though the Jacobian and Hessian mat
rices are larger, they are sparse, and the total
number of nonzeroes is typically much smaller
than in the hierarchical formulation, With prop
er exploitation of sparsity, and especially if the
behavior is nonlinear, greater efficiency can be
achieved. The optimization process now moves
towards a set of wvariables which simul-
taneously satisfy equilibrium and minimize the
objective. In contrast to the hierarchical for-
mulation, invertibility of stiffness matrix is not
required, and substructures can be created by
deleting elements (which might cause singul-
arity of the stiffness matrix of the original
structure). This is a consequence of the fact

that only the residual of the equilibrium equa-
tions 1s required for zero-order information,
and only the pseudo-force vectors associated
with sensitivity analysis and an evaluation of
the stiffness matrix are required for first-order
information, The linearly-constrained subprob-
lem is well-posed, the Jacobian matrix has full
row rank, and a numerical solution to the sub-
problem can be readily obtained,

2. NLP Formulation for the Optimal Topology
Problem

2.1 General Nonlinearly Constrained Optim-
ization

The general constrained optimization prob-
lem may be expressed as:

minimize F(x) objective function
subject to: (1)
gi{x)=0 i=1,2,---,m, equality constraints
g:{x) 0 i=mpy, -, minequality constraints
where
m, number of equality constraints
number of total gonstraints
x a vector containing optimization de-
sign variables

The objective function or any of the con-
straints imposed on the variables do not alway-
s involve only linear functions. Most often the
case in design optimization involves nonlinear
functions. Then, the problem is said to be one

of the class of nonlinear programming problem-
s (NLP).

2.2 Hierarchical Method and Simultaneous
Method
2.2.1 Hierarchical Method

Figure 1 shows the general optimum design
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process.! Thus conventional optimization for-
mulation for structural design (the hierarchical
method) does not include equilibrium equa-
tions (Ku=P) in its constraints. It eliminates
displacement variables in constraints by solv-
ing equilibrium equations at each optimization
iteration. Hence, the hierarchical formulation
is expressed as follows (assume the constraints
are related to displacements and stresses

g1(x) = C[KGOP(x)}]—uwp = 0 (2)
g2(x) = ColK(x) P(x)] — e, 2 0 (3)
where

g1(x) displacement constraints

Identify:

(1) Design variables

(2) Cost function to be minimized

(3) Constraints that must be satisfied

l

Collect data to
describe the system

!

Estimate initial design

!

Analyze the system:
Solve Ku=P

'

Check
the constraints

|

Does the design satisfy
convergence criteria? Yes

|~

Change the design using
an optimization method

Stop

Fig. 1 Optimum design process
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g,(x) stress constraints

C;, C, matrix of constant coefficients
K(x) stiffness matrix

P(x) a vector of applied loads

up displacement limits

oy, stress limits

Clearly, these constraints are not meaningful
when element sizes assume zero values, since
the stiffness matrix becomes singular and its
inverse no longer exists.

2.2.2 Simultaneous Method

The simultaneous formulation directly includ-
es the equilibrium equations as equality con-
straints. The simultaneous formulation is
expressed as follows:

g1(x) =Culx) —u, =20 (4)
gi(x) = Cul(x) —a, 20 (5)
ge(x) = K(x)u(x) — P(x) =0 (6)

The problem size becomes larger than that
of the hierarchical method because of the lar-
ger number of variables in the constraints. But
by including the equilibrium equations as equal-
ity constraints, one can avoid its singularity. It
does not require stiffness matrix inversion, It
requires only their evaluations, not their sol-
ution, at each optimization iteration.

2.3 NLP Formulation for the Topological
Structural Optimization

As stated above, our development addresses
the minimum weight of structures. It incorpor-
ates zero sizes; hence, the simultaneous met-
hod is used to insure that matrix singularity is
avoided.

Formulation

The NLP for the optimal topology is formul-
ated and stated as follows:
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objective function:
k

minimize F = total weight = 3 Aipit; (7)

i=1
constraints:
subject to:
Equilibrium equation:

Ku —P =0 (8)

Stress constraints:

ai“ <o < o i=1,2-,k (9

Displacement constraints:

wr<u< ! (10)

Thickness constraints:

th<t; < t? i=12- k& (11)

Parameters are defined as:
k  number of total elements
n number of degree of freedom after ap-
plying boundary condition
K nXn-stiffness matrix
P n-vector of applied nodal loads
o, o stress lower (upper) bounds of el-
ement 1
ub, u¥  n-vector of nodal displacement low-
er (upper) bounds
t- t¥ thickness lower (upper) bounds of
element 1
A; area of element i
o density of element i
and the variables are defined as:
t; thickness of element i
u n-vector of nodal displacement
Remarks
- All functions (7)-(11) are assumed to be
continuously differentiable.
- The nonlinearity in this formulation is

found in the equilibrium equations (8) and
stress constraints (9), which include bilin-
ear product of displacement and thickness,
The objective function (7) and all other
constraints are linear,

- If none of the t" is zero, then the NLP (7)
-{11) is no longer a topological design
problem and topology is fixed by the
thickness lower bounds.

- There is no guarantee that a unique mini-
mum exist, or that a local minimizer coin-
cides with a global minimizer.

- A single stress constraints (9) or displace-
ment constraints (10) can be chosen, if

needed.

2.4 Sequential Quadratic Programming Al-
gorithm

The sequential quadratic programming (SQP)
method is generally regarded as the best tech-
nique solving the NLP (1), and will be the met-
hod of choice in this study. SQP can be derived
as a Newton method for solving the first-order
constrained stationary conditions.® It is based on
the iterative formulation and solution of quad-
ratic programming subproblems, These subprob-
lems are defined by an objective function consis-
ting of a quadratic approximation of the Lagran-
gian function, the minimization of which is sub-
ject to linear approximations of the original con-
straints. That is:

minimize %pzam,xk)pkw(xkﬂpk

subject to:
V gi(xi) Tpetgilx) =0 1=1,2,+,me
V gilx) Tpktgi(x) < 0 1=Me4y,+++,m

XL—XkSkaXU_xk

where By is a positive definite approximation of

the Hessian of the Lagrangian function. x, repres-
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ents the current iterate points, Let py be the sol-

ution of the subproblem. A line search is used to
find a new point x;+;, where

Xi+1 = X T apy a€ (0, 1]

such that a merit function will have a lower
function value at the new point. The augmented
Lagrange function is used here as the merit func-
tion. When optimality is not achieved, By is
updated according to the BFGS formula.
Remark
- SQP applied to this problem requires at least
the gradient of objective function and Jac-
oblan matrix of the constraint set with re-
spect to the optimization variables. Second
derivative informations can be approximated
from differences of first derivatives, These
techniques are known as quasi-Newton met-
hod.

3. Examples of NLP for Topology Optimization

In this section, several examples are tested to
verify and examine the NLP formulation for opti-
mal topology. The NLP is solved using IMSL
implementation of the SQP algorithm, which
does exploit sparsity of Jacobian and Hessian
matrix.

Initial guesses for the displacements are com-
puted from the equilibrium equations for an in-
itial design to initiate the SQP method.

Common data for problems

- Aluminum (Al 6061-T6) is the material, i.e.

E=70GPa ¢,=240MPa 7,~140MPa
p—0.002710kg /cm®  »=0.34615

- Triangular finite elements are used.

- The structure is in plane stress.
- For stress constraints, 2 principle stress

(o1, o) and maximum shear stress (rm.y) are
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calculated for each element, and these stres-
ses should be less than (or equal to) the
maximum tension (compression, shear) stres-

ses. That is,

o] < oy
oy > — Oy

Tmax = Ty

+ For thickness constraints, following 1s used:
0<t< 10cm

- Density and areas of all elements are equal in

each example, hence, the objective function is
K

set to F=>_t, with the exception of the Example
1=1

1. The minimum volume is multiplied by density
and area to obtain weight.
- If thickness of any element reaches zero,
stress in that element is defined as zero.
- SQP terminates when the optimality con-

dition is less than 1077

3.1 Example 1

At first, the NLP formulation of the top-
ology problem is tested with just a three el-
ement model depicted in Figure 2, using differ-
ent initial thicknesses, density and lower boun-
d. Table 1 shows the values of each case and
optimal thicknesses

With elements of the same density, the opti-
mal topology consists of element 1, as expec-
ted. However, as element 2 and element 3 de-
crease in density relative to element 1, the op-
timal topology should consist of element 2 and
element 3, but the resulting topology from
NLP is element 1. Since the design space chan
ges abruptly, an initial guess arbitrarily close
to the global solution (elements 2 and 3) may
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not converge to it. For case 1.4, the initial thic
kness of element 1 taken as zero. Then NLP
seeks to reduce the large stress in element 1
by increasing tl, and as a result, an optimal
topology consists of element 1.

Convergence depends on initial weight, that
1s, the larger initial weight of element 1 is, the
faster the convergence. Hence, convergence
was fastest in case 1.3(it took just 5 itera-
tions). Convergence is fast because the opti-
mal topology consists of element 1, and the in-
itial weight of element 1 is larger than those of
elements 2 and 3. Convergence of case 1.1 is
slowest (it took 130 iterations). Interestingly,

’
0.5cm 4 Q3
’
A
’ a1 vy P=2400 kg
0.5cm A
A Q2
’
’
—
lcm

Fig. 2 Model for Example 1

Table 1 Optimal thickness and minimum weight of

example 1

case | element |imtial thick. | density Lower optimal | min, weight

number | number lem) | (kg/em’) | bound(cm) | thick.(em) | (kg)
4 150 21 0.00 200

case 1.1 B 150 211 0.00 0.00 2
18 150 27 000 0.00
0 150 21 0.00 200

case 1.2 [ 150 0.002n 0.00 0.00 21
U 130 0.00271 0.00 0.00
[0 150 27 0.00 200

case 1.3 [ 0.50 0.007 0.0 0.00 27
1 0.50 (.00271 0.00 0.00
N 0.00 271 0.00 200

case 1.4 I3 5.5 0.00271 0.00 0.00 271
3 5.5 0.002m 0.00 0.00
b 150 271 0.50 172

case 1.5 3 150 271 0.50 0.5 3.0081
13 130 271 0.50 0.50

3cm
e
P=100kgf —9 TN AT
E9\JEI E2
ES 18 28
X E9\JEI £2

E6 16 26
Sem
l ESN\JE? F.2
Y

F2 512 22
E1P\JE11\ JE21

A A A

initial thickness=0.5¢cm

Fig. 3 Model for Example 2

in case 1.5, lower bound of thickness (t) was
set to 0.5 cm, and the other conditions were
the same as case 1.1. The resulting optimal
thicknesses were different from case 1.1, how-
ever the resulting displacements were ident-
ical.

3.2 Example 2

In this section, the NLP formulation 1s tes-
ted, using each constraint with the test model
of Figure 3. Constraints are chosen as follows:

Case 2.1: stress constraints only

Case 2.2: displacement constraints only(—0.

lcm<u<0.lcm)
Case 2.3: displacement and stress constrain-
ts

Figure 4 shows the optimal topology. The
topologies of case 2.1 and case 2.2 are similar,
but the element thicknesses are different, and
the stresses of case 2.2 are very high (some val-
ues are twice of ay). In this example, we found
that the optimal topology usually depends on
only one constraint even though two constrain-
ts (stress and displacement) are applied. That
is, the topology with two constraints is same
as the topology with just stress constraint or
displacement constraint. Case 2.3 was chosen
so that both stress and displacement constrain-
ts are active,
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. t>0.1

i) § 0.05 <t < 0.1
0<t<0.05
t=0.0
t>0.1
0.05<t<0.1
0<t<0.05
t=10.0

(b) displacement constraints

—

0.05<t<0.1

0<t<0.05

t=0.0

(¢) stress+displacement constraints

Fig. 4 Optimal topologies of exampie 2

Table 2 Minimum weight and maximum displacement of

example 2
case | mnimum weight | maximum displacement
number 1 ~ (kg) (cm)
case 2.1 0.0014635 0.043382
case 2.2 0.00063429 0.1
case 2,3 0.00306549 (.027285
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4. Conclusion

We have presented an NLP formulation for
the optimal topology problem of structure.
This problem has been regarded as posing the
greatest difficulty to successful optimal de-
sign, The formulation guarantees at least a lo-
cal minimum. Potential singularity of the stiff-
ness matrix is avoided by embedding the beh-
avioral equations as equality constraints in the
optimization problem. Arbitrary objective fun-
ctions, stress and displacement constraints,
and upper and lower bounds on and linking of
the design variables can be easily handled.
The formulation is demonstrated on a number
of examples of topology optimization of plate
structures loaded in plane, and shown to be ro-
bust under a variety of constraints.

In this study, the formulation was tested
using coarse meshes and applied under a single
loading condition. However, it would be desir-
able to apply the formulation to multiple load-
ing conditions with finer meshes, Thus, we
will test the formulation under multiple load-
ing conditions in the not-too-distance future.
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