• Title/Summary/Keyword: Epitaxial layer

Search Result 335, Processing Time 0.027 seconds

Epitaxial Growth of BSCCO Films by IBS Method (IBS법에 의한 BSCCO 박막의 에피택셜 성장)

  • 양승호;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.627-630
    • /
    • 2002
  • Bi$_2$Sr$_2$CuOx(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion bean sputtering method. 10 wt% and 90 wt% ozone mired with oxygen were used with ultraviolet light irradiation to assist oxidation. XRD and RHEED investigations revealed that a buffer layer is formed at the early stage of deposition (less than 10 unit cell), and then c-axis oriented Bi-2201 grows on top of it.

  • PDF

Thin Film Growth and Evaluation Method for Conventional Co-Cr Based Perpendicular Magnetic Recording Media: Problems and New Solutions

  • Saito, Shin;Hoshi, Fumikazu;Hasegawa, Daiji;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.115-125
    • /
    • 2002
  • We proposed a novel method to evaluate the magnetic properties of the initial layer and the columnar structure separately for CoCr-based perpendicular recording media. We show that the thickness of the initial layer and the intrinsic magnetocrystalline anisotropy of columnar structure can be quantitatively evaluated using the plotted product of perpendicular anisotropy to magnetic film thickness versus magnetic film thickness ($K_{u{\bot}}^{ex{p.}}$ $\times$ d$_{mag.}$ vs. d$_{mag.}$ plot). Based on the analyses, it is found that: (1) compared with CoCrPtTa media, CoCrPtB media have relatively thin initial layer, and have fine grains with homogeneous columnar structure with c-plane crystallographic orientation; (2) CoCrPtB media can be grown epitaxially on Ru or CoCr/C intermediate layer, and as the result, the magnetic properties of the media within thin thickness region of d$_{mag.}$ $\leq$ 20 nm is significantly improved; (3) the key issue of material investigation for CoCr-based perpendicular recording media will be focused on how to fabricate c-plane-oriented columnar grains well isolated with nonmagnetic substance in epitaxial-growth media, while maintaining the thermal stability of the media.

Current Status of Layer Transfer Process in Thin Silicon Solar Cell : a review

  • U. Gangopadhyay;K. Chakrabarty;S.K. Dhungel;Kim, Kyung-Hae;Yi, Jun-Sin;D. Majumdar;H. Saha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.41-49
    • /
    • 2004
  • Layer transfer process has emerged as a promising tool in the field of thin silicon solar cell technology. This process can use mono-crystalline silicon as a surface for the epitaxial growth of a thin layer of silicon. It requires some sort of surface conditioning of the substrate due to which the surface become suitable for homo-epitaxy and lift off after solar cell fabrication. The successful reuse of substrate has been reported. The use of the conditioned surface without any kind of epitaxial layer growth is also the issue to be addressed. This review paper basically describes the five most cost effective methods on which works are in progress. Several types of possible problems envisaged by different research groups are also incorporated here with necessary discussion. Work in Korea has already started in this area in collaboration IC Design and Fabrication Centre, Jadavpur University, India and that also has been mentioned.

Growth and Etching of Epitaxial Layer and Polysilicon for the Selective Epitaxy (선택적 에피택시를 위한 에피택셜층 및 폴리실리콘의 성장과 에칭)

  • 조경익;김창수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.1
    • /
    • pp.34-40
    • /
    • 1985
  • An investigation has been made on the growth phenomena of epitaxial layer and polysilicon from SiH2 Cl2 in H2 and the etch phenomena of them from HCI in H2, at the system pressures of 1.0 atm (atmospheric process) and 0.1 attn (reduced pressure process). From the experimental equations for the growth rates and etch rates. the relevant process conditions for the selective epitaxy are predicted for the case of using mixtures of SiH2Cl2 and HCI in H2. As a result, it is found that selective epitaxial growth region exists in the concentration range investigated for the reduced pressure process but it does not for the atmospheric Process. This is due to the differences in the growth rates and etch rates at atmospheric and reduced pressure.

  • PDF

Low-Temperature Selective Epitaxial Growth of SiGe using a Cyclic Process of Deposition-and-Etching (증착과 식각의 연속 공정을 이용한 저온 선택적 실리콘-게르마늄 에피 성장)

  • 김상훈;이승윤;박찬우;심규환;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.657-662
    • /
    • 2003
  • This paper presents a new fabrication method of selective SiGe epitaxial growth at 650 $^{\circ}C$ on (100) silicon wafer with oxide patterns by reduced pressure chemical vapor deposition. The new method is characterized by a cyclic process, which is composed of two parts: initially, selective SiGe epitaxy layer is grown on exposed bare silicon during a short incubation time by SiH$_4$/GeH$_4$/HCl/H$_2$system and followed etching step is achieved to remove the SiGe nuclei on oxide by HCl/H$_2$system without source gas flow. As a result, we noted that the addition of HCl serves not only to reduce the growth rate on bare Si, but also to suppress the nucleation on SiO$_2$. In addition, we confirmed that the incubation period is regenerated after etching step, so it is possible to grow thick SiGe epitaxial layer sustaining the selectivity. The effect of the addition of HCl and dopants incorporation was investigated.

Geometrical and Electronic Structure of Epitaxial Graphene on SiC(0001) : A Scanning Tunneling Microscopy Study

  • Ha, Jeong-Hoon;Yang, Hee-Jun;Baek, Hong-Woo;Chae, Jung-Seok;Hwang, Beom-Yong;Kuk, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.368-368
    • /
    • 2010
  • Monolayers of graphite can be grown by fine controlled surface graphitization on the surfaces of various metallic and semiconducting materials. Epitaxial graphene grown on polished silicon carbide crystal surfaces has drawn much attention due to well known vacuum annealing procedures from surface analysis methods, especially scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). In this study, we have grown single layer and few layer graphene on silicon terminated 6H-SiC(0001) crystals. The growth of graphene layers were observed by low energy electron diffraction(LEED) patterns. Scanning tunneling microscopy and spectroscopy measurements were performed to illustrate the electronic structure which may display some clue on the influence of the underlying structure. Spatially resolved STS results acquired at the edges of epitaxial graphene show in detail the electron density of states, which is compared to theoretical calculations. STM measurements were also done on graphene films grown by chemical vapor deposition(CVD) and transferred onto a SiC(0001) crystal. These observations may provide a hint for the understanding of carrier scattering at the edges.

  • PDF

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF

Effect of $Al_2O_3$ pre-layers formed using protective Si-oxide layer on the growth of ultra thin ${\gamma}-Al_2O_3$ epitaxial layer (보호용 실리콘 산화막을 이용하여 제조된 $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$ 에피텍시의 성장에 미치는 영향)

  • Jung, Young-Chul;Jun, Bon-Keun;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.389-395
    • /
    • 2000
  • In this paper, we propose the formation of an $Al_2O_3$ pre-layer using a protective Si-oxide layer and Al layer. Deposition of a thin film layer of aluminum onto a Si surface covered with a thin Si-oxide layer and annealing at $800^{\circ}C$ led to the growth of epitaxial $Al_2O_3$ layer on Si(111). And ${\gamma}-Al_2O_3$ layer was grown on the $Al_2O_3$ per-layer. Etching of the Si substrate by $N_2O$ gas could be avoided in the initial growth stage by the $Al_2O_3$ pre-layer. It was confirmed that the $Al_2O_3$ pre-layer was effective in improving the surface morphology of the very thin ${\gamma}-Al_2O_3$ films.

  • PDF

The effects of pile dup Ge-rich layer on the oxide growth of $Si_{1-x}Ge_{x}$/Si epitaxial layer (축적된 Ge층이 $Si_{1-x}Ge_{x}$/Si의 산화막 성장에 미치는 영향)

  • 신창호;강대석;박재우;송성해
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • We have studied the oxidatio nrte of $Si_{1-x}Ge_{x}$ epitaxial layer grown by MBE(molecular beam epitaxy). Oxidation were performed at 700.deg. C, 800.deg. C, 900.deg. C, and 1000.deg. C. After the oxidation, the results of AES(auger electron spectroscopy) showed that Ge was completely rejected out of the oxide and pile up at $SiO_{2}/$Si_{1-x}Ge_{x}$ interface. It is shown that the presence of Ge at the $SiO_{2}$/$Si_{1-x}Ge_{x}$ interface changes the dry oxidation rate. The dry oxidation rate was equal to that of pure Si regardless of Ge mole fraction at 700.deg. C and 800.deg.C, while it was decreased at both 900.deg. C and 1000.deg.C as the Ge mole fraction was increased. The ry oxidation rates were reduced for heavy Ge concentration, and large oxidation time. In the parabolic growth region of $Si_{1-x}Ge_{x}$ oxidation, The parabolic rate constant are decreased due to the presence of Ge-rich layer. After the longer oxidation at the 1000.deg.C, AES showed that Ge peak distribution at the $SiO_{2}$/$Si_{1-x}Ge_{x}$ interface reduced by interdiffusion of silicon and germanium.

  • PDF