Epitaxial Growth of CeO₂ and Y₂O₃ Buffer-layer Films on Textured Ni Tapes Using RF Magnetron Sputtering

Y. J. Oh*, a, J. S. Ra+, a, C. J. Kimb

^a Hanbat National University, Daejeon, Korea ^b Korea Atomic Energy Research Institute, Daejeon, Korea

We comparatively studied the epitaxial growth conditions of CeO_2 and Y_2O_3 thin buffers on textured Ni tapes using rf magnetron sputtering and investigated the feasibility of getting single mixture layer or sequential layers of CeO_2 and Y_2O_3 for more simplified buffer architecture. All buffer layers were first deposited using the reducing gas of $Ar/4\%H_2$ and subsequently the reactive gas mixture of Ar and O_2 . The crystalline quality and biaxial alignment of the films were investigated using X-ray diffraction techniques (θ - 2θ , ϕ and ω scans, pole figures). CeO_2 single layer exhibited well developed (200) epitaxial growth below 450°C, but Y_2O_3 showed much smaller window of temperature condition for (400) epitaxial growth. The sequential architecture of $CeO_2/Y_2O_3/CeO_2$ having good epitaxial property was achieved by sputtering at the substrate temperature of 700°C on the CeO_2 bottom layer sputtered at 400°C. To get high quality of single buffer layer, co-deposition of $CeO_2-Y_2O_3$ was adopted at various sputtering conditions and discussed the feasibility of getting proper epitaxial growth.

keywords: buffer layer, CeO2, Y2O3, rf magnetron sputtering, texture