• Title/Summary/Keyword: Epitaxial

Search Result 896, Processing Time 0.028 seconds

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

Effects of CF4 Plasma Treatment on Characteristics of Enhancement Mode AlGaN/GaN High Electron Mobility Transistors

  • Horng, Ray-Hua;Yeh, Chih-Tung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.62-62
    • /
    • 2015
  • In this study, we study the effects of CF4 plasma treatment on the characteristics of enhancement mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs). The CF4 plasma is generated by inductively coupled plasma reactive ion etching (ICP-RIE) system. The CF4 gas is decomposed into fluorine ions by ICP-RIE and then fluorine ions will effect the AlGaN/GaN interface to inhibit the electron transport of two dimension electron gas (2DEG) and increase channel resistance. The CF4 plasma method neither like the recessed type which have to utilize Cl2/BCl3 to etch semiconductor layer nor ion implantation needed high power to implant ions into semiconductor. Both of techniques will cause semiconductor damage. In the experiment, the CF4 treatment time are 0, 50, 100, 150, 200 and 250 seconds. It was found that the devices treated 100 seconds showed best electric performance. In order to prove fluorine ions existing and CF4 plasma treatment not etch epitaxial layer, the secondary ion mass spectrometer confirmed fluorine ions truly existing in the sample which treatment time 100 seconds. Moreover, transmission electron microscopy showed that the sample treated time 100 seconds did not have etch phenomena. Atomic layer deposition is used to grow Al2O3 with thickness 10, 20, 30 and 40 nm. In electrical measurement, the device that deposited 20-nm-thickness Al2O3 showed excellent current ability, the forward saturation current of 210 mA/mm, transconductance (gm) of 44.1 mS/mm and threshold voltage of 2.28 V, ION/IOFF reach to 108. As IV concerning the breakdown voltage measurement, all kinds of samples can reach to 1450 V.

  • PDF

RTA Effect on Transport Characteristics in Al0.25Ga0.75As/In0.2Ga0.8As pHEMT Epitaxial Structures Grown by Molecular Beam Epitaxy (MBE로 성장된 Al0.25Ga0.75As/In0.2Ga0.8As pHEMT 에피구조의 RTA에 따른 전도 특성)

  • Kim, Kyung-Hyun;Hong, Sung-Ui;Paek, Moon-Cheol;Cho, Kyung-Ik;Choi, Sang-Sik;Yang, Jeon-Wook;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.605-610
    • /
    • 2006
  • We have investigated $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ structures for pseudomorphic high electron mobility transistor(pHEMT), which were grown by molecular beam epitaxy(MBE) and consequently annealed by rapid thermal anneal(RTA), using Hall measurement, photoluminescence, and transmission electron microscopy (TEM). According to intensity and full-width at half maximum maintained stable at the same energy level, the quantized energy level in $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ quantum wells was independent of the RTA conditions. However, the Hall mobility was decreased from $6,326cm^2/V.s\;to\;2,790cm^2/V.s\;and\;2,078cm^2/V.s$ after heat treatment respectively at $500^{\circ}C\;and\;600^{\circ}C$. The heat treatment which is indispensable during the fabrication procedure would cause catastrophic degradation in electrical transport properties. TEM observation revealed atomically non-uniform interfaces, but no dislocations were generated or propagated. From theoretical consideration about the mobility changes owing to inter-diffusion, the degraded mobility could be directly correlated to the interface scattering as long as samples were annealed below $600^{\circ}C$ lot 1 min.

Superconducting Properties and Tunneling Spectroscopy of Bi2Sr2Ca(Cu1-xNix)2O8+δ Film by LPE Method (LPE법으로 성장시킨 Bi2Sr2Ca(Cu1-xNix)2O8+δ 막(film)의 초전도특성 및 터널링 분광)

  • 이민수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.455-459
    • /
    • 2003
  • Tunneling spectra of B $i_2$S $r_2$Ca(C $u_{1-x}$ N $i_{x}$ )$_2$ $O_{8+}$$\delta$/ film by LPE method have been measured using break junctions. The energy gap 2$\Delta$ and 2$\Delta$/ $k_{B}$ $T_{c}$ $^{zero}$ increased with increase of ft. We obtained the energy gap Parameter 2$\Delta$(4.2 K) = 54.4~64 meV, and corresponding1y $\Delta$/ $k_{B}$ $T_{c}$ $^{zero}$=7.36~10.14, larger than the BCS value. The lattice constant c and critical temperature $T_{c}$ $^{zero}$ decrease with increase of $\chi$$_{L}$.

Annealing under low oxygen partial pressure for crystal growth of BaTiO$_3 $thin films prepared by coating-pyrolysis process (코딩-열분해법에 의해 제조한 BaTiO$_3 $ 박막의 결정 성장을 위한 낮은 산소 분압에서의 열처리)

  • Kim, Seung-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.111-115
    • /
    • 2000
  • $BaTIO_3$ thin films were prepared on (100) $BaTIO_3$ substrates by coating- pyrolysis process using metal-organic compounds of Ba and Ti. The amorphous films prefired at $450^{\circ}C$were crystallized above $700^{\circ}C$ under oxygen partial pressure of $2\times 10^{-4}$. The lattice parameters of the perpendicular axis for the $BaTIO_3$ thin films heat-treated below $800^{\circ}C$ were closer to a value of cubic $BaTIO_3$, whereas those above $800^{\circ}C$ were closer to a value of tetragonal BaTiG. The results of XRD P scan and pole-figure analyses indicated that BaTiO, thin films have an epitaxial relationship with the $SrTiO_3$ substrates. The $BaTIO_3$thin films annealed at$800^{\circ}C$ showed the surface with island-like grains about 0.4$mu \textrm{m}$ and the cross section of 0.8 $mu \textrm{m}$ thickness with granular grains.

  • PDF

Numerical study of the influence of inlet shape design of a horizontal MOCVD reactor on the characteristics of epitaxial layer growth (수평 화학기상증착 반응기의 입구형상 설계가 단결정 박막증착률 특성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.247-253
    • /
    • 2003
  • In this study, a numerical analysis of the deposition of gallium arsenide from TMGa and arsine in a horizontal MOCVD reactor is performed to investigate the effect of inlet diffuser shape of reactor on the flow and deposition characteristics. The effects of two geometric parameters (diffuser angle, diffuser shape) on the growth rate, growth rate uniformity, flow uniformity and pressure loss are presented. As a results, it is found that the optimum linear diffuser angle is in the range of $50^{\circ}$$55^{\circ}$ and parabolic diffuser in the range of $40^{\circ}$$45^{\circ}$ from the viewpoint of growth rate uniformity, flow uniformity and average growth rate. It is also found that variation of diffuser angle has greater impact on growth rate uniformity than average growth rate particularly in parabolic diffuser.

Interaction of cracks and precipitate particles on the REBCO superconducting layers of practical CC tapes through fractographic observations

  • de Leon, Michael;Diaz, Mark A.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 2020
  • Electromechanical properties of REBCO CC tapes are known to be limited by defects (cracks) that form in the brittle REBCO layer. These defects could be inherently acquired during the CC tapes' manufacturing process, such as slitting, and which can be initiated at the CC tapes' edges. If propagated and long enough, they are believed to cause critical current degradation and can substantially decrease the delamination strength of CC tapes. Currently, commercially available CC tapes from various manufacturers utilize different growth techniques for depositing the REBCO layers on the substrates in their CC tapes preparation. Their epitaxial techniques, unfortunately, cannot perfectly avoid the formation of particles, in which sometimes acts as current blocking defects, known as outgrowths. Collective research regarding the composition, size, and formation of these particles for various CC tapes with different deposition techniques are particularly uncommon in a single study. Most importantly, these particles might interact in one way or another to the existing cracks. Therefore, systematic investigation on the interactions between the cracks' development mechanism and particles on the REBCO superconducting layers of practical CC tapes are of great importance, especially in the design of superconducting devices. Here, a proper etching process was employed for the CC tapes to expose and observe the REBCO layers, clearly. The scanning electron microscope, field emission scanning microscope, and energy-dispersive x-ray spectroscopy were utilized to observe the interactions between cracks and particles in various practical CC tapes. Particle compositions were identified whether as non-superconducting or superconducting and in what manner it interacts with the cracks were studied.

GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS (PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교)

  • Lee, Chang-Min;Kang, Byung Hoon;Kim, Dae-Sik;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.

Monolithic Integrated Amplifier for Millimeter Wave Band (밀리미터파 대역 단일 집적 증폭기)

  • Ji, Hong-Gu;Oh, Seung-Hyeub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3917-3922
    • /
    • 2010
  • In this paper, 3 stage amplifier MMIC was designed and fabricated with U-band optimized epitaxal pHEMT that produced by large signal characterization and modeling for 60 GHz band. The pHEMT used in this paper, the gate $0.12\;{\mu}m$ length and total gate width of $100\;{\mu}m$, $200\;{\mu}m$ has been modeled using the large signal designed with negative feedback and MCLF instead of MIM capacitor for improving stability. Fabricated MMIC $2.5{\times}1.5mm^2$ size, current about 40 mA, operating frequency 59.5~60.5 GHz, gain 19.9~18.6 dB, input matching characteristics -14.6~-14.7 dB, output matching characteristics -11.9~-16.3 dB and output -5 dBm characteristics were obtained.

Formation of Co-N Film using reactive sputtering of Co and growth of epitaxial $CoSi_2$ using the Co-N film (반응성 스퍼터링을 이용한 Co-N 박막 형성 및 이를 이용한 $CoSi_2$ 에피층 성장)

  • 이승렬;김선일;안병태
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.62-62
    • /
    • 2003
  • 금속-실리콘간 화합물인 실리사이드 중에서, 코발트다이실리사이드(CoSi$_2$)는 비저항이 낮고 선폭이 좁아짐에 따라 면저항이 급격히 증가하는 선폭의존성이 없으며 화학적으로 안정한 재료로 현재 널리 이용되고 있는 재료이다. 또한, 실리콘 (100) 기판과 에피택셜하게 성장한 CoSi$_2$는 우수한 열안정성 과 낮은 juction leakage의 특성을 가지며, shallow junction 형성을 가능하게 하는 많은 장점을 가지고 있어 각광받고 있다. 그러나 순수한 Co의 증착 후속 열처리에 의해 형성된 CoSi$_2$는 (110), (111), (221)등의 다양한 결정방위를 가지게 되어 에피택셜 하게 형성되기 어렵다. 현재까지 Ti, Ta, Zr과 화학 산화막 등의 확산 방지막을 이용하여 에피 택셜하게 성장시키는 많은 방법들이 연구되어 왔으며, 최근에는 본 연구실에서 반응성화학기상증착법으로 Co-C 박막을 증착하여 in-Situ로 에피택셜 CoSi$_2$를 형성하는 새로운 방법을 보고하였다. 본 연구는 반응성 스퍼터링에 의해 증착된 Co-N 박박으로부터 후속 열처리를 통하여 에피택셜 CoSi$_2$를 성장시키는 새로운 방법을 제시하고자 한다. Co-N 박박은 Ar과 $N_2$의 혼합가스 분위기 속에서 Co를 스퍼터링하여 증착하였다. 증착시 혼합가스 내의 $N_2$함량의 변화에 따라 다양한 Co-N 박막이 형성됨을 확인하였다. 후속열처리시 Co-N 박막의 산화를 방지하기 위하여 Ti층을 마그네트론 스퍼터링으로 증착하였으며, Ar 분위기에서 온도에 따른 ex-situ RTA 열처리를 통하여 에피택셜 CoSi$_2$를 성장시킬 수 있었다. 이러한 에피택셜 CoSi$_2$는 특정 한 Ar/$N_2$ 비율 내에서 성장이 가능하였으며, 약 $600^{\circ}C$이상의 열처리 온도에서 관찰되었다.

  • PDF