• Title/Summary/Keyword: Epimerization

Search Result 13, Processing Time 0.031 seconds

Epimerization of L-Arabinose for Producing L-Ribose (L-리보스 생산을 위한 L-아라비노스의 에피머반응)

  • Jeon, Young Ju;Song, Sung Moon;Lee, Chang Soo;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.628-632
    • /
    • 2011
  • L-ribose has recently attracted interest as a starting material for antiviral drug. It could be obtained from L-arabinose by epimerization reaction. Epimerization reaction was carried out with molybdenium oxide or molybdic acid catalyst and methanol/water solution. Reaction temperature, methanol percentage, and catalyst kind were selected to find an optimum reaction condition. Ion exhange chromatography was used for separating epimerization reaction mixture, and then HPLC chromatogram of L-ribose fraction obtained to calculate the yield of the reaction. Shodex ion exchange HPLC column(Model SC1011) and Phenomenex Luna $NH_2$ HPLC column were compared to employ a convenient HPLC analysis. It was found that the usage of 20% methanol, $60^{\circ}C$, and 40 g/L molybdic acid gives the best reaction condition with a yield of 21%.

Prevention of Epimerization and Quantitative Determination of Amygdalin in Armeniacae Semen with Schizandrae Fructus Solution

  • Joo, Woo-Sang;Jeong, Ji-Seon;Kim, Hyo-Geun;Lee, Yong-Moon;Lee, Je-Hyun;Hong, Seon-Pyo
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1096-1101
    • /
    • 2006
  • Armeniacae Semen not only contains amygdalin, but emulsin also, which is an enzyme that hydrolyzes amygdalin. The extraction yield of amygdalin from Armeniacae Semen was low, due to the presence of emulsin, when extracted with water. When Schizandrae Fructus solution was used as the extractant; however, amygdalin was almost completely extracted, regardless of the cutting size, due to the absence of the influence of emulsin. In addition, when the crude powder or small piece forms were used with Schizandrae Fructus solution, on epimerization of the D-amygdalin into neoamygdalin occurred. D-amygdalin and its conversion product, neoamygdalin, were quantitatively analyzed by reverse-phase, high-performance liquid chromatography (HPLC), with an optimized eluent of 10 mM sodium phosphate buffer (pH 2.3), containing 11.5% acetonitrile. The concentration and detector response were linearly correlated over the range 0.05 to 2 mM. The detection limits for both D-amygdalin and neoamygdalin were approximately $5\;{\mu}M$ for the amount injected.

Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins

  • Wang, Chaoming;Liu, Juan;Deng, Jianqiang;Wang, Jiazhen;Weng, Weizhao;Chu, Hongxia;Meng, Qingguo
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.14-23
    • /
    • 2020
  • Ginseng has been used as a popular herbal medicine in East Asia for at least two millennia. However, 20(R)-ginseng saponins, one class of important rare ginsenosides, are rare in natural products. 20(R)-ginseng saponins are generally prepared by chemical epimerization and microbial transformation from 20(S)-isomers. The C20 configuration of 20(R)-ginseng saponins are usually determined by 13C NMR and X-ray single-crystal diffraction. 20(R)-ginseng saponins have antitumor, antioxidative, antifatigue, neuroprotective, and osteoclastogenesis inhibitory effects, among others. Owing to the chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. In this study, the discovery, identification, chemical epimerization, microbial transformation, pharmacological activities, and metabolism of 20(R)-ginseng saponins are summarized.

Apoptosis Induction of Persicae Semen Extract in Human Promyelocytic Leukemia (HL-60) Cells

  • Kwon, Hee-Young;Hong, Seon-Pyo;Hahn, Dong-Hoon;Kim, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.157-161
    • /
    • 2003
  • The major ingredient of Persicae Semen is a cynogenic compound, amygdalin (D-mandelonitrile-$\beta$-gentiobioside). Controversial results on the anticancer activity of amygdalin were reported due to its conversion to its inactive isomer, neoamygdalin. In order to inhibit the epimerization of amygdalin, we used newly developed simple acid boiling method in preparation of Persicae Semen extract. HPLC analysis revealed most of amygdalin in Persicae Semen extract was active D-form. Persicae Semen extract was used to analyze its effect on cell proliferation and induction of apoptosis in human promyelocytic leukemia (HL-60) cells. Persicae Semen extract was cytotoxic to HL-60 cells with $IC_{50}$ of 6.4 mg/mL in the presence of 250 nM of $\beta$-glucosidase. The antiproliferative effects of Persicae Semen extract appear to be attributable to its induction of apoptotic cell death, as Persicae Semen extract induced nuclear morphology changes and internucleosomal DNA fragmentation.

Effect of Heat-epimerized-catechin-mixture Rich in Gallocatechin-3-gallate on Skin Barrier Recovery (갈로카테킨-3-갈레이트가 풍부한 열전환 카테킨의 피부 장벽 회복에 대한 개선 효과)

  • Kim, Jeong-Kee;Shin, Hyun-Jung;Lee, Sang-Min;Jeon, Hee-Young;Lee, Sang-Jun;Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • Until now, (-)-epigallocatechin-3-gallate(EGCG) is known as the most powerful antioxidant among green tea catechins having many beneficial effects on human skin. Considering that the content of catechins is variable according to many conditions such as solvent, temperature and pressure, we prepared the heat-epimerized-EGCG-mixture (HE-EGCG-mix) containing high content of gallocatechin-3-gallate(GCG) by epimerization during autoclaving process and found out its optimal condition for maximizing conversion from EGCG to GCG. To investigate the effects of EGCG and HE-EGCG-mix on skin barrier function, we performed in vivo experiments with hairless mice. We found that HE-EGCG-mix has more potent stimulating activity than EGCG for the production of involucrin 7(INV7) and for recovery of barrier function in SKH-1 mice. Also, we found that GCG stimulates $PPAR-{\alpha}$ transactivation more effectively than EGCG in vitro by transient transfection assay for $PPAR-{\alpha}$ activation activity. These imply that HE-EGCG-mix consisting of high content of GCG should stimulate more efficiently recovery of skin barrier through PPAR-mediated-kerationocyte differentiation than EGCG. In conclusion, our study may provide a possibility that GCG, the C-2 epimer of EGCG, could be a potentially effective agent for development of new cosmetics or health foods for recovery of skin barrier.

Effects of Temperature, Illumination, and Sodium Ascorbate on Browning of Green Tea Infusion

  • Ye, Qian;Chen, Hao;Zhang, Lin Bin;Ye, Jian Hui;Lu, Jian Liang;Liang, Yue Rong
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.932-938
    • /
    • 2009
  • Browning of tea infusion is an obstructive factor influencing shelf life of ready-to-drink green tea. Effects of temperature and illumination on the browning of green tea infusion were investigated. It was shown that both elevated temperature and illumination led to the browning of green tea infusion, but temperature had greater effect on infusion color and level of catechins than illumination. The levels of unoxidized catechins such as (-)-epigallocatechin gallate (EGCg), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), (-)-epicatechin (EC), and total catechins remaining in the tea infusion were significantly correlated to color parameters of the tea infusion. Sodium ascorbate inhibited the infusion browning by suppressing the oxidation of tea catechins and it is considered to be a more suitable preservative for prolonging shelf life of ready-to-drink green tea than ascorbic acid because it has less effect on tea taste. The effects of temperature and illumination on the epimerization of catechins were also discussed.

Stability of Tetracycline Hydrochloride in Reverse Micelles

  • Kim, Hyun-Joo;Lee, Hwa-Jeong;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.333-336
    • /
    • 2005
  • The objective of this study was to investigate the stability of tetracycline HCl on encapsulation into and inside reverse micelles. To do so, tetracycline HCl was first mixed with cetyltrimethylammonium bromide, water and ethyl formate to make reverse micelles. The degradation kinetics of tetracycline HCl inside the reverse micelles was then assessed by scrutinizing its stability data. Under our experimental conditions, the reverse micelles formed spontaneously in absence of any mixing devices. During the preparation of the reverse micelles, however, considerable portions of tetracycline HCl underwent a chemical reaction (e.g., epimerization). For instance, $51.4{\pm}0.6%$ of an initial concentration of tetracycline HCl was transformed into a degradation product. Once dissolved inside the reverse micelles, the degradation of tetracycline HCl followed an exponential decay pattern. The plot of log{the degradation rate of tetracycline HCl} versus log{tetracycline HCl concentration} made it possible to determine the order of degradation reaction and rate constant. It was proven that the degradation of tetracycline HCl inside the reverse micelles followed a first order kinetics with a rate constant of 0.0027 $hour^{-1}$. Meriting further investigation might be formulation studies to stabilize tetracycline HCl on encapsulation into and inside the reverse micelles.

A Study on the Inhibition of 2-deoxy-D-Glucose Transport of the Endogenous Glucose Transporters in Spodoptera frugiperda Clone 21-AE Cells by Using Hexoses

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.487-492
    • /
    • 2005
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. Spodoptera frugiperda Clone 21 (Sf2l) cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, very little is known about the properties of the endogenous sugar transporter(s) in Sf2l cells, although a saturable transport system for hexose uptake has been previously revealed in the Sf cells. In order to further examine the substrate and inhibitor recognition properties of the Sf2l cell transporter, the ability of hexoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. The $K_i's$ for reversible inhibitors were determined from plots of uptake versus inhibitor concentration. Transport was effectively inhibited by D-mannose and D-glucose. Of the hexoses tested, L-glucose had the least effect on 2dGlc transport in the Sf2l cells, indicating that the transport is stereoselective. Unlike the human HepG2 type glucose transport system, D-mannose had a somewhat greater affinity for the Sf2l cell transporter than D-glucose, implying that the hydroxyl group at the C-2 position is not necessary for strong binding. However, epimerization at the C-4 position of D-glucose (D-galactose) resulted in a dramatic decrease in affinity of the hexose for the Sf2l cell transporter. Such a lowering of affinity might be the result of the involvement of the C-4 hydroxyl in hydrogen bonding. It is therefore suggested that Sf2l cells were found to contain an endogenous sugar transport activity that in several aspects resembles the human HepG2 type glucose transporter, although the insect and human transporters do differ in their affinity for cytochalasin B.

  • PDF