Asymmetric Synthesis and Epimerization of Aryloxazinones

Seung-Han Lee* and Dae-Jun Ahn
Department of Chemistry. College of Natural Science, Kyung Hee Unversity, Yongin 449-701. Korea Received September 21. 1998

An interesting and important nonproteinogenic class of amino acids is the arylglycines' which are found in a wide range of bioactive compounds such as nocardicines ${ }^{2}$ and glycopeptide antibiotics ${ }^{3}$ (e.g. vancomycin, teicoplanin, ristocetin, β-avoparcin, and actaplanin). However, the arylglycines are diflicult to synthesize in optically pure form due to the ease at which the α-methine proton can undergo basecalalyzed racemization. ${ }^{1}$

Numerous approaches to the asymmetric synthesis of arylglycines have appeared, including: asymmetric Strecker synthesis; ${ }^{5}$ arylation or alkylation of nucleophilic glycinates. ${ }^{6}$ arylation of electrophilic glycinates ${ }^{7}$ electrophilic amination of chiral enolates; ${ }^{8}$ and nuelcophilic amination of α-substituted acids" and others. ${ }^{10}$

Some of these works use the chiral 5,6-diphenyloxazinones as a glycine equivalent. Williams reported the asymmetric synthesis of several arylglycines via the cuprate or Friedel-Crafts couplings to chiral 3-bromooxazinone. ${ }^{7 \mathrm{~d}}$ Also the photolysis of |(amino)(aryl)carbene|chromium complexes having the optically active amino alcohol were reported to give the aryloxazinones. ${ }^{106}$ [[owever these methodologies limit the general synthesis of various arylglycines due to the availability of aryl metal compounds.

We report herein our preliminary studies on the conversion of (arene) $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{-} \mathrm{PF}_{6}{ }^{-}$complexes to aryloxazinones, which can be converted to arylglycines, wia their reaction with the chiral glycine equivalent, 5-phenyloxazinone ($\mathbf{1}$ a or $\mathbf{1 b}$). ${ }^{11}$

Preparation of the arene-manganese complexes were accomplished in high yields on using a modification of the procedure described by Rybinskaya et al. ${ }^{12}$ Bemzene-manganese complex was obtained by means of the conventional procedure $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}^{2}-\mathrm{AlCl}_{3}-\mathrm{he} \mathrm{e}_{\mathrm{at}}\right]^{13} \quad$ (Arene) $\mathrm{Mn}(\mathrm{CO})_{3}$ complexes (2) were treated with enolate of $\mathbf{1 a}$ or $\mathbf{1 b}$ to give the substituted cyclohexadienyl- $\mathrm{Mn}(\mathrm{CO})_{3}$ complexes (3). We could not separate the cyclohexadienyl- $\mathrm{Mn}(\mathrm{CO})_{\text {s }}$ complexes since significant decomposition of eyclohexadienyl$\mathrm{Mn}(\mathrm{CO})_{\text {, complexes oceurs upon attempted silica gel chro- }}$ matography. So direct treatment of these reaction mixture with N-bromosuccinimide (NBS) effected oxidative demetallation to give the anti-aryloxazinones (4) in moderate yields and high diastereoselectivities (Scheme 1).
The results were summarized in Table 1. We have examined the various bases and solvents ($\mathrm{NaHMDS} / \mathrm{DME}, \mathrm{NaH}-$ MDS/THF, KHMDS/THF, LiHMDS/THF, and L.DA/THF) for the reaction and found that they gave the similar yields ($61-67 \%$). Also addition of HMPA did not improve the yields and diastereoselectivities. The electrophile approaches from the less hindered face of the oxazinone enolate giving the anti-aryloxazinone.

Table 1. Arylation of Oxazinones 1 ling (Arene) $\mathrm{Mn}(\mathrm{CO})_{3}$ Complexes

entry P	Ma complexes (2)	product vield (\%) ${ }^{\text {cte }}$ de (\%) ${ }^{\text {h }}$		
1 Boc	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{FI}$	4 a	63	95
2 Boc	$\mathrm{R}_{1}=\mathrm{H}_{2} \mathrm{R}_{2}=\mathrm{OCH}_{3}$	4 b	65	90
3 Boc	$\mathrm{R}_{1}=\mathrm{H} . \mathrm{R}_{2}=\mathrm{OFh}$	4 c	49	75
4 Boc	$\mathrm{R}_{1}=\mathrm{H} . \mathrm{R}_{2}=\mathrm{O}\left(\rho-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$	$4 d$	55	99
5 BOC	$\mathrm{R}_{1} \mathrm{If} . \mathrm{R}_{2} \mathrm{O}\left(p-\mathrm{l}^{2} \mathrm{hCH} \mathrm{H}_{2} \mathrm{OC}_{6} \mathrm{l}_{4}\right)$	4 c	44	81
6 (b)	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{HI}$	4 f	60	89
7 (b)	$\mathrm{R}_{1}=11 . \mathrm{R}_{2}=0 \mathrm{ClH} ;$	4 g	55	94
8 Cbz	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{5}$	4h	62	87

" Yield ol isolated. pure ani-isomer. ${ }^{h}$ Determined from isolated yields of pure $a m i-$ and $s m$-isomers.

In case of the (1,3-dimethoxycyclohexadienyl)Mn complex ($\mathrm{P}=\mathrm{Boc}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}$), use of 1 equivalent of NBS gave the complicated reaction mixture. However, use of 2 equivalents of NBS gave the mixture of anti-aryloxazinone $5(25 \%)$ and monobrominated aryloxazinone 6 (30\%). Brominated aryloxazinone 6 might be formed by electrophilic substitution of aryloxazinone 5 which has the electron-rich aromatic ring.

5

6

We tried the alkylation of the enolates of anti-3-aryloxazinones with alkyl halide to prepare the 3 -alkyl-3-aryloxazinones. However, the reaction gave the epimerized syn-3-

Scheme 2
Table 2. I:pimerization of anti-3-Aryloxazinones

entry	anti-oxazinone $(\mathbf{4})$	sym-oxazinone (7)	ratio $(7: \mathbf{4})^{u}$
\mathbf{l}	$\mathbf{4 a}$	7 a	$87: 13$
2	$\mathbf{4 b}$	$\mathbf{7 b}$	$81: 19$
3	$\mathbf{4 c}$	$\mathbf{7 c}$	$70: 30$
4	$\mathbf{4 d}$	$7 \mathbf{d}$	$72: 28$
5	$\mathbf{4 e}$	$7 \mathbf{e}$	$70: 30$
6	$\mathbf{4 f}$	$\mathbf{7 f}$	$56: 44$
7	$\mathbf{4 g}$	$\mathbf{7 g}$	$88: 12$
8	$\mathbf{4 h}$	$\mathbf{7 h}$	$74: 26$

"Determined from isolated yields of pure $a, m i-$ and s wh-isomers.
aryloxazinones instead at $-78^{\circ} \mathrm{C}$. Therefore, we studied the conversion of ani-3-aryloxazinones to $s y n-3$-aryloxazinones at low temperature. Anti-ary loxazinones $4^{1 / 4}$ were treated with KHMDS in THF at $-78^{\circ} \mathrm{C}$ and quenched with saturated ammonium chloride solution at $-78^{\circ} \mathrm{C}$ to give the epimerized $s v n$-aryloxazinones 7^{15} in moderate yields (Scheme 2, Table 2). The treatment of syn-3-aryloxazinones with base at $-78^{\circ} \mathrm{C}$ gave the similar syn/anti ratios. The results show that the enolate anion of 3-aryloxazinone is stabilized by the aryl group and attacked by proton from the opposite side of the 5 -phenyl group to afford the syn-3-aryloxazinone as a major isomer.
The equilibration experiments were done using several bases to show whether the syn-3-aryloxazinones were the kinetic or thermodynamic products (Scheme 3). The results show that ani-3-aryloxazinones are thermodynamic products (Table 3). Thus, the epimerization of the arylglycine enolate synthons demonstrated to be the result of kinctic control by equilibration experiments for phenyl adduct $\mathbf{4 a}$.

Scheme 3
Table 3. Thermodynamic Equilibration Studies

entry	basc	ratio (4a: 7a) ${ }^{\text {t }}$
1	NaOtitelolf	2.7:1
2	LISA/ItIF	1:1
3	Nallmisslitio	1.1:1

[^0]

A simple deprotection scheme was used for the Boc-protected phenyl adduct (Scheme 4). ${ }^{11}$ Exposure of anti-phenyloxazinone $4 \mathbf{a}$ to excess refluxing ethanolic hydrogen chloride for 2 h and removal of the volatiles provided the ethyl ester HCl salt which was neutralized by refluxing in absolute ethanol containing propylene oxide to afford $\mathbf{8 a}$ in 96% yield. Hydrogenolysis of 8 a under influence of $5 \% \mathrm{Pd} /$ C and hydrogen (15 psi) at room temperature gave the phenylglycine ethyl ester. Determination of optical purity of the final phenylglycine derivative is underway.

In conclusion, the anti-aryloxazinones were prepared in moderate yields and high diastereoselectivities from the nucleophilic substitution of chiral glycine enolate equivalents with (arene) $\mathrm{Mn}(\mathrm{CO})$:' complexes. Also, syn-aryloxazinones were obtained in moderate yields via epimerization of anti-aryloxazinones. Investigations concerning the conversion of aryloxazinones to arylglycines are underway.

Acknowledgment. We are grateful to the Korea Science and Engineering Foundation (92-25-00-08) and Kyung Hee University for financial support of this work.

References

1. For reviews, see: (a) Willians, R. M. Synthesis of Optically Active α-Amino Acids: Pergamon Press: Oxford, 1989. (b) Williams, R. M.: Hendrix, J. A. Chem. Rev. 1992,92, 889.
2. (a) Townsend. C. A.; Brown, A. M. J. Am. Chem. Soc: 1983. $105,913$.
3. (a) Rama Rao, A. V.; Gurjar, M. K.; Laxma Reddy, K.; Rao, A. S. Chem. Rev. 1995, 95, 2135.
4. (a) Smith, G. G.: Sivakura T.J. Org. Chem. 1983, 78, 627. (b) Bodanszky M.; Bodanszky, A. I. Chem. Soc., Chem. (ommun. 1967. 591.
5. (a) Weinges, K.: Brachmann, H.; Stahnecker, P.; Rodewald, II.: Nixdorf, M.; lmgartinger, 1I. Liehigs Ann. Chem. 1985, 566. (b) Kunz, H.; Sager, W.; Schanenbach, D.; Decker, M. Liebigs Ann. Chem. 1991, 649. (c) Kunz. H.: Pfrengle, W. J. Am. Chem. Soc. 1988, 110, 651. (d) Iyer, M. S.; Gigstad, K. M.: Namdev, N. D.: Lipton, M. J. Am. Chem. Soc. 1996, /IS. 4910.
6. (a) l.ee, S.-H.: Nam, S.-W. Bull. Korean Chem. Soc. 1998, 19, 613. (b) Pearson, A. J.; Bruhn. P. R.: Gouzoules. F.; Lee, S.-H. J. Chem. Soc., Chem. Commun. 1989. 659. (c) Pearson, A. J.; Lee, S.-H.; Gouzoules, F. J. Chem. Soc., Perkin Trans. / 1990, 2251. (d) Schölkopf, U.: Scheuer. R. Liebigs Ann. (hem. 1984, 939. (c) Secbach, D.; Acbi, J. D.; Naef, R.: Weber, 1. Helv. Chim. Acta. 1985, $68,144$.
7. (a) Schöllkopf, U.; Gruther, S.: Anderskewitz, R.; Egert. E.; Dyrbusch, M. Angen: Chem., Int. Ed. Engl. 1987, 26, 683. (b) Harding, K. E.; Davis. C. S. Tetrahedron Lett. 1988. 29, 1891. (c) Schickli, C. P.; Seebach, D. Liebigs

Anm. Chem. 1991, 655. (d) Williams, R. M.: Hendrix, J. Λ. J. Org Chem. 1990, 55, 3723.
8. (a) Oppolzer, W.: Tamura, O. Tetrahedron Lett. 1990, 31, 991. (b) Evans, D. A.: Britton, I: C:. Dorow, R. L.: Dellaria, l. F. Tetrahechon 1988, 4f, 5525 . (c) Evans, D. A.: Nelsom S. G. J. Am. Chem. Soc 1997, M19. 6452
9. (a) Evans, D. A: Britem, T. C.: Fllman, J. A.: Deron, R I. J. Am. Chem. Soc 1990, $/ 12,40$ II (b) Fennstra, R. W: Stokingred, F. H. M.: Nivard, R. I. F. Ottenheijm, H. C. J. Tetrahedron 1988, 44, 5583
10. (a) Hegedus, I. S.: Schwindt, M. A.: DeI.ombaert. S.: Imwinkelried, R. J. Am. (hem. 'Soc. 1990, /12, 2264. (b) Vernier. J.-M.: I legedus, L. S.: Miller: D. B. J. Org. Chem. 1992, 57, 6914. (c) Charri. M: Jenhi, A.: Lavergne, I.-I?: Viallefont, L'. Tenahedion 1991, 47, 4619. (d) Boger. D). L.: Borzilleri, R. M.: Nukui, S. J. Ofg. Chem. 1996, 61, 3561. (e) Reddy, K. L.: Sharpless, K. B. J. Am. Chem. Soc: 1998, I20, 1207.
11. Dellaria, J. F.: Santarsicro. B. D. J. Org. (hem 1989, 54 , 3916.
12. Rybinskaya, M. I.: Kaganowich, V. S: Kudinor, A. R. Bull. Acad Sici. IK'R Div. Chem. Sci 1984, 33, 813
13. Pauson, P. I.: Segal, J. A. I. (hem Soc: Dolton Trons. 1975. 1677.
14. (3S,5S)-4-tert-Butyloxycarbonyl-3,5-diphenyl-2,3,5,6-tetrahydro-4H-1,t-oxazin-2-one (4a). mp 176-177 ${ }^{\circ} \mathrm{C}$,
 DMSO-d. at 298 K) $\delta 7.46-7.20$ ($\mathrm{m}, 10 \mathrm{H}$), 5.99 (s) and 5.91 (s) ($1 \mathrm{ll}, \mathrm{O}_{2} \mathrm{CC} / / \mathrm{PhN}$), 5.55 (s) and 5.43 (s) (1 ll , $\mathrm{NCHPhCHHO}), 4.76(\mathrm{~d})$ and 4.57 (d) ($1 \mathrm{H}, J=11.0 \mathrm{H} /$, $\mathrm{NPhCHC} H \mathrm{H}), 4.54(\mathrm{~d})$ and $4.38(\mathrm{~d})(1 \mathrm{H}, J=10.8 \mathrm{Hy} \% \mathrm{NPh}-$ $\left.\mathrm{C}^{\prime} \mathrm{HCH} H\right), \mathrm{I} .16$ and $1.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)=1 \mathrm{H} \operatorname{NMR}(400$
 $1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CC} H \mathrm{PlN}$) $5.47(\mathrm{~s}, \mathrm{IH}, \mathrm{NC} H \mathrm{PhCHHO}), 4.66$ (br s) and 4.46 (br s) $(2 \mathrm{H}, \mathrm{PhCHCH} H \mathrm{O}), \mathrm{I} .15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$) $\mathrm{IR}(\mathrm{KBr}) 1756,1706 \mathrm{~cm}^{-1}$. Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}$, 71.37:11, 6.56: N, 3.96. Found: C, 71.20: 11, 6.81: N, 4.06.
15. ($\mathbf{3 R}, \mathbf{5 S}$)-4-tert-Butyloxycarbonyl-3,5-diphenyl-2,3,5,6-tetrahydro-4H-1,t-oxazin-2-one (7a). $\lfloor\alpha\rfloor^{35} \mathrm{D}=+89(\mathrm{c} 0.4$,
 7.23 (m, 311), 7.08-7.05 (m, 2ll), 6.27(s) (111, $\left.\mathrm{O}_{2} \mathrm{CC} / \mathrm{I} / \mathrm{hN}\right), 4.96$ (dd, IHL $J=12.0,5.0 \mathrm{lz}, \mathrm{NIPhCH}-$ ($H \mathrm{HO}), 419(\mathrm{dd}, \mathrm{IH}, J=12.4,5.6 \mathrm{Hr}, \mathrm{NPhCHCHHO})$, $4.13(\mathrm{~L}, J=12.2 \mathrm{H}, \mathrm{NPhC} H \mathrm{CHH}), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \%$) 8 168.6, 155.6. 138.2. 137.1, 129.7. $129.0,128.9,128.4,127.2,126.9,82.3,69.0,59.7,58.7$. 28.4; IR (KBr) 1772, $1697 \mathrm{~cm}^{-1}$. Anal. Calced. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 71.37: \mathrm{H}, 6.56: \mathrm{N}, 3.96$. Found: C, 70.95 : 11, 7.02: N, 3.88.

[^0]: "Ratios were determined by isolated yields.

