• Title/Summary/Keyword: Epigenetic

Search Result 440, Processing Time 0.026 seconds

Folate and Homocysteine Levels during Pregnancy affect DNA Methylation in Human Placenta (임산부의 혈중 엽산과 호모시스틴 수준이 태반세포의 DNA 메틸화에 미치는 영향)

  • Park, Bo-Hyun;Kim, Young-Ju;Lee, Hwa-Young;Ha, Eun-Hee;Min, Jung-Won;Park, Jong-Soon;Park, Hye-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2005
  • Objectives : DNA methylation is one of the best characterized epigenetic mechanisms that play a regulatory role in genome programming and imprinting during embryogenesis. In this present study, we investigated the association between DNA methylation in the human placenta and the maternal folate and homocysteine concentrations on the Methylenetetrahydrofolatereductase (MTHFR) genetic polymorphism during pregnancy. Methods : We investigated 107 pregnant women who visited Ewha Woman's University Hospital for prenatal care during their $24{\sim}28$ weeks-period of gestation. During the second trimester, we measured the serum homocysteine and folate concentrations . The MTHFR 677 genetic polymorphism was determine by performing PCR-RFLP assay. The expression of DNA methylation in the human placentas was estimated by using immunohistochemistry method. Results : Serum folate was negatively correlated with the serum homocysteine concentration for all the MTHFR genotypes. We found positive correlation between the folate concentrations and the DNA methylation in the human placenta (p<0.05). An increasing concentration of homocysteine was associated with reduced DNA methylation in the human placenta. The coefficient value was -2.03 (-3.77, -0.29) on the regression model (p<0.05). Conclusion : These findings suggest that the maternal folate and homocysteine levels along with the MTHFR 677 genetic polymorphism during pregnancy affect the DNA methylation in the human placenta.

Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

  • Park, Kyunghyuk;Frost, Jennifer M.;Adair, Adam James;Kim, Dong Min;Yun, Hyein;Brooks, Janie S.;Fischer, Robert L.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.768-775
    • /
    • 2016
  • The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75-90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Effects of Trichostatin A on In Vitro Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Diao, Yun-Fei;Kenji, Naruse;Han, Rong-Xun;Lin, Tao;Oqani, Reza-K.;Kang, Jung-Won;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Developmental potential of cloned embryos is related closely to epigenetic modification of somatic cell genome. The present study was to investigate the effects of applying histone deacetylation inhibitor, trichostatin A (TSA) to activated porcine embryos on subsequent development of porcine parthenogenetic and nuclear transfer embryos. Electrically activated oocytes were treated with 5 nM TSA for different exposure times (0, 1, 2 and 4 hr) and then the activated embryos were cultured for 7 days. The reconstructed embryos were treated with different concentrations of 0, 5, 10 and 25 nM TSA for 1 hr. Also 5 nM TSA was tested with different exposure times of 0, 0.5, 1, 2 and 4 hr. And fetal fibroblast cells were treated with 50 nM TSA for 1, 2 or 4 hr and with 5 nM TSA for 1 hr. Cumulus-free oocytes were enucleated and reconstructed by TSA-treated donor cells and electrically fused and cultured for 6 days. In parthenogenetic activation experiments, 5 nM TSA treatment for 1 hr significantly improved the percentage of blastocyst developmental rates than the other groups. Total cell number of blastocysts in 1 hr group was significantly higher than other groups or control. Similarly, blastocyst developmental rates of porcine NT embryos following 5 nM TSA treatment for 1 hr were highest. And the reconstructed embryos from donor cells treated by 50 nM TSA for 1 hr improved the percentage of blastocyst developmental rates than the control group. In conclusion, TSA treatment could improve the subsequent blastocyst development of porcine parthenogenetic and nuclear transfer embryos.

Effect of Valproic acid, a Histone Deacetylase Inhibitor, on the Expression of Pluripotency and Neural Crest Specific Marker Genes in Murine Multipotent Skin Precursor Cells

  • Hong, Ji-Hoon;Park, Sang-Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.209-214
    • /
    • 2010
  • Cells that have endogenous multipotent properties can be used as a starting source for the generation of induced pluripotent cells (iPSC). In addition, small molecules associated with epigenetic reprogramming are also widely used to enhance the multi- or pluripotency of such cells. Skinderived precursor cells (SKPs) are multipotent, sphereforming and embryonic neural crest-related precursor cells. These cells can be isolated from a juvenile or adult mammalian dermis. SKPs are also an efficient starting cell source for reprogramming and the generation of iPSCs because of the high expression levels of Sox2 and Klf4 in these cells as well as their endogenous multipotency. In this study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was tested in the generation of iPSCs as a potential enhancer of the reprogramming potential of SKPs. SKPs were isolated from the back skins of 5-6 week old C57BL/6 X DBA/2 F1 mice. After passage 3, the SKPs was treated with 2 mM of VPA and the quantitative real time RT-PCR was performed to quantify the expression of Oct4 and Klf4 (pluripotency specific genes), and Snai2 and Ngfr (neural crest specific genes). The results show that Oct4 and Klf4 expression was decreased by VPA treatment. However, there were no significant changes in neural crest specific gene expression following VPA treatment. Hence, although VPA is one of the most potent of the HDAC inhibitors, it does not enhance the reprogramming of multipotent skin precursor cells in mice.

DNA METHYLATION OF TPEF GENE IN HEAD AND NECK SQUAMOUS CELL CARCINOMA CELL LINES (두경부암 세포주에서 TPEF 유전자의 methylation 변이)

  • Chun, So-Young;Kim, Jung-Ock;Hong, Su-Hyung;Chung, Yu-Kyung;Jang, Hyun-Jung;Shon, Yoon-Kyung;Kim, Jung-Wan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.468-473
    • /
    • 2005
  • Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. The molecular mechanisms involved in the development and progression of these carcinomas are not well known. Abnormalities of genomic methylation patterns have been attributed a role in carcinogenesis and local de novo methylation at tumor suppressor loci was held to be involved in silencing of tumor suppressor genes. Using Ms APPCR, we previously isolated a hypermethylated fragment corresponded to the 5' end of TPEF gene from primary liver and lung cancer cells. To confirm the inactivation of TPEF gene by hypermethylation in HNSCC, we investigated correlation between methylation pattern and expression of TPEF in 10 HNSCC cell lines. In methylation analysis such as combined-bisulfite restriction analysis(COBRA) and bisulfite sequencing, only RPMI 2650 showed none methylated pattern and another 9 cell lines showed dense methylation. The TPEF gene expression level analysis using RT-PCR showed that these 9 cell lines had not or significantly low expression levels of TPEF as compared with RPMI 2650. In addition, the increase of TPEF reexpression by 5-AzaC as demethylating agent in 9 cell lines also indicated that TPEF expression was regulated by hypermethylation. These results of this study demonstrate that epigenetic silencing of TPEF gene by aberrant methylation could play an important role in HNSCC carcinogenesis.

Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct

  • Guo, Jing;He, Hongjuan;Liu, Qi;Zhang, Fengwei;Lv, Jie;Zeng, Tiebo;Gu, Ning;Wu, Qiong
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.859-865
    • /
    • 2015
  • Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.

Concurrent Hypermethylation of SFRP2 and DKK2 Activates the Wnt/β-Catenin Pathway and Is Associated with Poor Prognosis in Patients with Gastric Cancer

  • Wang, Hao;Duan, Xiang-Long;Qi, Xiao-Li;Meng, Lei;Xu, Yi-Song;Wu, Tong;Dai, Peng-Gao
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Aberrant hypermethylation of Wnt antagonists has been observed in gastric cancer. A number of studies have focused on the hypermethylation of a single Wnt antagonist and its role in regulating the activation of signaling. However, how the Wnt antagonists interacted to regulate the signaling pathway has not been reported. In the present study, we systematically investigated the methylation of some Wnt antagonist genes (SFRP2, SFRP4, SFRP5, DKK1, DKK2, and APC) and their regulatory role in carcinogenesis. We found that aberrant promoter methylation of SFRP2, SFRP4, DKK1, and DKK2 was significantly increased in gastric cancer. Moreover, concurrent hypermethylation of SFRP2 and DKK2 was observed in gastric cancer and this was significantly associated with increased expression of ${\beta}-catenin$, indicating that the joint inactivation of these two genes promoted the activation of the Wnt signaling pathway. Further analysis using a multivariate Cox proportional hazards model showed that DKK2 methylation was an independent prognostic factor for poor overall survival, and the predictive value was markedly enhanced when the combined methylation status of SFRP2 and DKK2 was considered. In addition, the methylation level of SFRP4 and DKK2 was correlated with the patient's age and tumor differentiation, respectively. In conclusion, epigenetic silencing of Wnt antagonists was associated with gastric carcinogenesis, and concurrent hypermethylation of SFRP2 and DKK2 could be a potential marker for a prognosis of poor overall survival.

CTCF Regulates Otic Neurogenesis via Histone Modification in the Neurog1 Locus

  • Shin, Jeong-Oh;Lee, Jong-Joo;Kim, Mikyoung;Chung, Youn Wook;Min, Hyehyun;Kim, Jae-Yoon;Kim, Hyoung-Pyo;Bok, Jinwoong
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.695-702
    • /
    • 2018
  • The inner ear is a complex sensory organ responsible for hearing and balance. Formation of the inner ear is dependent on tight regulation of spatial and temporal expression of genes that direct a series of developmental processes. Recently, epigenetic regulation has emerged as a crucial regulator of the development of various organs. However, what roles higher-order chromatin organization and its regulator molecules play in inner ear development are unclear. CCCTC-binding factor (CTCF) is a highly conserved 11-zinc finger protein that regulates the three-dimensional architecture of chromatin, and is involved in various gene regulation processes. To delineate the role of CTCF in inner ear development, the present study investigated inner ear-specific Ctcf knockout mouse embryos (Pax2-Cre; $Ctcf^{fl/fl}$). The loss of Ctcf resulted in multiple defects of inner ear development and severely compromised otic neurogenesis, which was partly due to a loss of Neurog1 expression. Furthermore, reduced Neurog1 gene expression by CTCF knockdown was found to be associated with changes in histone modification at the gene's promoter, as well as its upstream enhancer. The results of the present study demonstrate that CTCF plays an essential role in otic neurogenesis by modulating histone modification in the Neurog1 locus.

Contemporary Issues Surrounding Folic Acid Fortification Initiatives

  • Choi, Jeong-Hwa;Yates, Zoe;Veysey, Martin;Heo, Young-Ran;Lucock, Mark
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.247-260
    • /
    • 2014
  • The impact of folate on health and disease, particularly pregnancy complications and congenital malformations, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple countries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary issues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in blood, masking of vitamin $B_{12}$ deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been associated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the excess use of PteGlu without consideration of an individual's specific phenotypic traits (e.g. genetic background and undiagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of dihydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous advances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well focused further research to better understand and to minimize any risk of mandatory folic acid fortification.